Skip to main content
Log in

Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure

  • New Methods in Cell Biology
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Biological membranes with cubic symmetry are a hallmark of virus-infected or diseased cells. The mechanisms of formation and specific cellular functions of cubic membranes, however, are unclear. The best-documented cubic membrane formation occurs in the free-living giant amoeba Chaos carolinense. In that system, mitochondrial inner membranes undergo a reversible structural change from tubular to cubic membrane organization upon starvation of the organism. As a prerequisite to further analyze the structural and functional features of cubic membranes, we adapted protocols for the isolation of mitochondria from starved amoeba and have identified buffer conditions that preserve cubic membrane morphology in vitro. The requirement for high concentration of ion-chelating agents in the isolation media supports the importance of a balanced ion milieu in establishing and maintaining cubic membranes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almsherqi ZA, Kohlwein SD, Deng Y (2006) Cubic membranes: a legend beyond the Flatland of cell membrane organization. J Cell Biol 173:839–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almsherqi Z, Hyde S, Ramachandran M, Deng Y (2008) Cubic membranes: a structure-based design for DNA uptake. J R Soc Interface 5:1023–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almsherqi ZA, Landh T, Kohlwein SD, Deng Y (2009) Chapter 6: cubic membranes the missing dimension of cell membrane organization. Int Rev Cell Mol Biol 274:275–342

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG, Orci L, Brown MS, Garcia SL, Goldstein JL (1983) Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. J Cell Sci 63:1–20

    CAS  PubMed  Google Scholar 

  • Andresen S, Mushett CW (1963) Investigations on mitochondria in homogenates of the amoeba Chaos Chaos L. CR Trav Lab Carlsberg 33:265–287

    CAS  Google Scholar 

  • Angelova B, Angelova A, Ollivon M, Bourgaux C, Campitelli A (2003) Diamond-type lipid cubic phase with large water channels. J Am Chem Soc 125:7188–7189

    Article  PubMed  Google Scholar 

  • Awad TS, Okamoto Y, Masum SM, Yamazaki M (2005) Formation of cubic phases from large unilamellar vesicles of dioleoylphosphatidyl-glycerol/monoolein membranes induced by low concentrations of Ca2+. Langmuir 21:11556–11561

    Article  CAS  PubMed  Google Scholar 

  • Bernandi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95. doi:10.3389/fphys.2013.00095

    Google Scholar 

  • Boustany NN, Drezek R, Thakor NV (2002) Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging. Biophys J 83:1691–1700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brenner-Holzach O, Raaflaub J (1954) Die correlation zwischen der schwellung isolierter mitochondrion und dem abbau intramitochondrialen adenosine nucleotide (ATP, ADP, AMP, CoA). Helv Physiol Pharmacol Acta 12:242–252

    CAS  PubMed  Google Scholar 

  • Chappell JB, Crofts AR (1964) Calcium ion accumulation and volume changes of isolated liver mitochondria. Calcium ion-induced swelling. Biochem J 95:378–386

    Google Scholar 

  • Chin DJ, Luskey KL, Anderson RGW, Faust JR, Goldstein JL, Brown MS (1982) Appearance of crystalloid endoplasmic reticulum in compactin-resistant Chinese hamster cells with a 500-fold elevantion in 3-hydroxy-3-methylglutaryl CoA reductase. Proc Natl Acad Sci USA 79:1185–1189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chong K, Deng Y (2012) The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy. Methods Cell Biol 108:319–343

    CAS  PubMed  Google Scholar 

  • Cleland KW, Slater EC (1953) Respiratory granules of heart muscle. Biochem J 53:547–550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Daniels EW, Breyer EP (1968) Starvation effects on the ultrastructure of amoeba mitochondria. Z Zellforsch Mikrosk Anat 91:159–169

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Mieczkowski M (1998) Three-dimensional periodic cubic membrane structure in the mitochondria of amoebae Chaos carolinensis. Protoplasma 203:16–25

    Article  CAS  Google Scholar 

  • Deng Y, Marko M, Buttle KF, Leith A, Mieczkowski M, Mannella CA (1999) Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J Struct Biol 127:231–239

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Almsherqi ZA, Shui G, Wenk MR, Kohlwein SD (2009) Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria. FASEB J 23:2866–2871

    Article  CAS  PubMed  Google Scholar 

  • Di Paola M, Lorusso M (2006) Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757:1330–1337

    Article  PubMed  Google Scholar 

  • Gruner SM, Cullis PR, Hope MJ, Tilcock CP (1985) Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem 14:211–238

    Article  CAS  PubMed  Google Scholar 

  • Hackenbrock CR, Caplan AL (1969) Ion-induced ultrastructural transformations in isolated mitochondria. J Cell Biol 42:221–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2+ -induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077

    CAS  PubMed  Google Scholar 

  • Jingami H, Brown MS, Goldstein JL, Anderson RGW, Luskey KL (1987) Partial deletion of membrane-bound domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase eliminates sterol-enhanced degradation and prevents formation of crystalloid endoplasmic reticulum. J Cell Biol 104:1693–1704

    Article  CAS  PubMed  Google Scholar 

  • Koch GL (1990) The endoplasmic reticulum and calcium storage. Bioessays 12:527–531

    Article  CAS  PubMed  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Landh T (1995) From entangled membranes to eclectic morphologies: cubic membranes as subcellular space organizers. FEBS Lett 369:13–17

    Article  CAS  PubMed  Google Scholar 

  • Li SJ, Yamashita Y, Yamazaki M (2001) Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures. Biophys J 81:983–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mast SO, Doyle WL (1935) Structure, origin and function of cytoplasmic constituents in Amoeba proteus. I. Structure. Arch Protistenk 86:155–180

    Google Scholar 

  • Masum SM, Li SJ, Awad TS, Yamazaki M (2005) Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures. Langmuir 21:5290–5297

    Article  CAS  PubMed  Google Scholar 

  • Ninham BW, Lo Nostro P (2010) Molecular forces and self assembly. In: Colloid, nano sciences and biology. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Orci L, Brown MS, Goldstein JL, Garcia-Segura LM, Anderson RGW (1984) Increase in membrane cholesterol: a possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells. Cell 36:835–845

    Article  CAS  PubMed  Google Scholar 

  • Raaflaub J (1953) Über den wirkungsmechanismus von adenos- itriphosphat (ATP) als cofaktor isoliertermitochondrien. Helv Physiol Pharmacol Acta 11:157–165

    CAS  PubMed  Google Scholar 

  • Reinold M, Stockem W (1972) Darstellung eines ATP-sensitiven membransystems mit Ca++-transportierender Funktion bei Amoben. Cytobiologie 4:182–194

    Google Scholar 

  • Roitelman J, Olender EH, Bar-Nun S, Dunn WAJ, Simoni RD (1992) Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum. J Cell Biol 117:959–973

    Article  CAS  PubMed  Google Scholar 

  • Saetersdal T, Engedal H, Roli J, Myklebust R (1980) Calcium and magnesium levels in isolated mitochondria from human cardiac biopsies. Histochemistry 68:1–8

    Article  CAS  PubMed  Google Scholar 

  • Scheffler IE (1999) Mitochondria. Wiley-Liss, New York

    Book  Google Scholar 

  • Snapp EL, Hedge RS, Francolini M, Lombardo F, Colombo S, Pedrazzini E, Borgese N, Lippincott-Schwartz J (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi H, Hatta I, Quinn PJ (1996) Cubic phases in hydrated 1:1 and 1:2 dipalmitoylphosphatidylcholine-dipalmitoylglycerol mixtures. Biophys J 70:1407–1411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan OL-L, Almsherqi ZA, Deng Y (2005) A simple mass culture of the amoeba Chaos carolinense. Protistology 4:185–190

    Google Scholar 

  • Tyler AI, Shearman GC, Brooks NJ, Delacroix H, Law RV, Templer RH, Ces O, Seddon JM (2011) Hydrostatic pressure effects on a hydrated lipid inverse micellar Fd3m cubic phase. Phys Chem Chem Phys 13:3033–3038

    Article  CAS  PubMed  Google Scholar 

  • Vail WJ, Stollery JG (1979) Phase changes of cardiolipin vesicles mediated by divalent cations. Biochim Biophys Acta 551:74–84

    Article  CAS  PubMed  Google Scholar 

  • Varadarajan S, Tanaka K, Smalley JL, Bampton ET, Pellecchia M, Dinsdale D, Willars GB, Cohen GM (2013) Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis. PLoS One 8:e55603

    Article  Google Scholar 

  • Wakabayashi T (2002) Megamitochondria formation—physiology and pathology. J Cell Mol Med 6:497–538

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Yorke MA, Dickson DH (1985) Lamellar to tubular conformational changes in the endoplasmic reticulum of the retinal pigment epithelium of the newt, Notophthalmus viridescens. Cell Tissue Res 241:629–637

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Shoon Meiyin, Ms. Low Chwee Wah, and Mr. Lim Teck Kwang for technical assistance. The electron microscopy and proteomics studies were conducted at the Electron Microscopy Unit at Yong Loo Lin School of Medicine, and the Proteins and Proteomics Center at the National University of Singapore, respectively. This work was supported by grants from the Austrian Science Funds, FWF (Project F3005 LIPOTOX) to S.D.K. and BMRC, Singapore (R-185-000-197-305) to Y.D.

Conflict of interest

The authors have no conflict of interest. All forms of financial support are acknowledged in the contribution. No agreement is signed with any sponsor of the research reported that forbids our publishing of this research without the prior approval of the sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Deng.

Additional information

Handling Editor: Jan Raoul De Mey

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, K., Tan, O.L.L., Almsherqi, Z.A. et al. Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure. Protoplasma 252, 689–696 (2015). https://doi.org/10.1007/s00709-014-0698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0698-9

Keywords

Navigation