Skip to main content
Log in

Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the present study, polyembryoids of oil palm (Elaeis guineensis Jacq.) were cryopreserved with successful revival of 68 % for the first time using the droplet vitrification technique. Excised polyembryoids (3–5-mm diameter) from 3-month-old in vitro cultures were pre-cultured for 12 h in liquid Murashige and Skoog medium supplemented with 0.5 M sucrose. The polyembryoids were osmoprotected in loading solution [10 % (w/v) dimethyl sulphoxide (DMSO) plus 0.7 M sucrose] for 30 min at room temperature and then placed on aluminium strips where they were individually drenched in chilled droplets of vitrification solution (PVS2) [30 % (w/v) glycerol plus 15 % (w/v) ethylene glycol (EG) plus 15 % (w/v) DMSO plus 0.4 M sucrose] for 10 min. The aluminium strips were enclosed in cryovials which were then plunged quickly into liquid nitrogen and kept there for 1 h. The polyembryoids were then thawed and unloaded (using 1.2 M sucrose solution) with subsequent transfer to regeneration medium and stored in zero irradiance. Following for 10 days of storage, polyembryoids were cultured under 16 h photoperiod of 50 μmol m−2 s−1 photosynthetic photon flux density, at 23 ± 1 °C. Post-thaw growth recovery of 68 % was recorded within 2 weeks of culture, and new shoot development was observed at 4 weeks of growth. Scanning electron microscopy revealed that successful regeneration of cryopreserved polyembryoids was related to maintenance of cellular integrity, presumably through PVS2 exposure for 10 min. The present study demonstrated that cryopreservation by droplet vitrification enhanced the regeneration percentages of oil palm in comparison with the conventional vitrification method previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ISSR:

Inter-simple sequence repeats

LN:

Liquid nitrogen

LS:

Loading solution

MC:

Moisture content

MS:

Murashige and Skoog

PPFD:

Photosynthetic photon flux density

PVS2:

Plant vitrification solution 2

RAPD:

Random amplified polymorphic DNA

SEM:

Scanning electron microscope

VS:

Vitrification solution

References

  • Benson EE, Harding K, Smith H (1989) Variation in recovery of cryopreserved shoot-tips of Solanum tuberosum exposed to different pre- and post-freeze light regimes. CryoLetters 10:323–344

    Google Scholar 

  • Chen XL, Li JH, Xin X, Zhang ZE, Xin PP, Lu XX (2011) Cryopreservation of in vitro-grown apical meristems of Lilium by droplet-vitrification. South African J Bot 77:397–403. doi:10.1016/j.sajb.2010.10.005

    Article  Google Scholar 

  • Cochard B, Durand-Gasselin T, Amblard P, Konan EK, Gogor S (2000) Performance of adult oil palm clones. In: Emerging technologies and opportunities in the next millennium. Agriculture conference: proceedings of 1999 PORIM international palm oil congress (PIPOC 1999). Kuala Lumpur, Malaysia, pp 53-64

  • Condello E, Caboni E, Andre E, Piette B, Druart R, Swennen R, Panis B (2011) Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters 32:75–85

    Google Scholar 

  • Corley RHV, Tinker PB (2008) The Oil Palm. Blackwell Science Ltd., Oxford

    Google Scholar 

  • Coste A, Halmagyi A, Butiuc-Keul AL, Deliu C, Coldea G, Hurdu B (2012) In vitro propagation and cryopreservation of Romanian endemic and rare Hypericum species. Plant Cell Tiss Organ Cult 110:213–226. doi:10.1007/s11240-012-0144-7

    Article  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12(352):355

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and perspectives. In Vitro Cell Dev Biol Plant 40:427–433. doi:10.1079/IVP2004541

    Article  Google Scholar 

  • Engelmann F, Engels JMM (2002) Technologies and strategies for ex situ conservation. In: Engels JMM, Ramanatha RV, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. (International Plant Genetic Resources Institute). CABI Publishing, Rome, pp 89–103

    Google Scholar 

  • Engelmann F, Duval Y, Dereuddre J (1985) Survival and proliferation of oil palm (Elaeis guineensis Jacq.) somatic embryos after freezing in liquid nitrogen. Comptes Rendus de l’Académie des Sciences Paris 301, Sér. III: 111-116

  • Fábián A, Jäger K, Darkó É, Barnabás B (2008) Cryopreservation of wheat (Triticum aestivum L.) egg cells by vitrification. Acta Physiol Plant 30:737–744. doi:10.1007/s11738-008-0176-0

    Article  Google Scholar 

  • Gagliardi RF, Pacheco GP, Carneiro LA, Valls JFM, Vieira MLC, Mansur E (2003) Cryopreservation of Arachis species by vitrification of in vitro-grown shoot apices and genetic stability of recovered plants. CryoLetters 24:103–110

    CAS  PubMed  Google Scholar 

  • Gallard A, Panis B, Dorion N, Swennen R, Grapin A (2008) Cryopreservation of Pelargonium apices by droplet-vitrification. CryoLetters 29:243–251

    PubMed  Google Scholar 

  • Gantait S, Sinniah UR (2013) Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. Plant Biotechnology Rep 7:257–266. doi:10.1007/s11816-012-0257-9

    Article  Google Scholar 

  • Gantait S, Mandal N, Bhattacharyya S, Das PK (2010) An elite protocol for accelerated quality-cloning in Gerbera jamesonii Bolus cv. Sciella. In Vitro Cellular Dev Biol-Plant 46:537–548. doi:10.1007/s11627-010-9319-2

    Article  Google Scholar 

  • Gantait S, Sinniah UR, Mandal N, Das PK (2012) Direct induction of protocorm-like bodies from shoot tips, plantlet formation, and clonal fidelity analysis in Anthurium andreanum cv. CanCan. Plant Growth Regul 67:257–270. doi:10.1007/s10725-012-9684-4

    Article  CAS  Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Organ Cult 92:1–13. doi:10.1007/s11240-007-9303-7

    Article  Google Scholar 

  • Guzmán-García E, Bradaї F, Sánchez-Romero C (2013) Cryopreservation of avocado embryogenic cultures using the droplet-vitrification method. Acta Physiol Plant 35:183–193. doi:10.1007/s11738-012-1062-3

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Harding K, Benson EE (2000) Analysis of chloroplast DNA in Solanum tuberosum plantlets derived from cryopreservation. CryoLetters 21:279–288

    CAS  Google Scholar 

  • Harding K, Benson EE (2001) The use of microsatellite analysis in Solanum tuberosum L. in vitro plantlets derived from cryopreserved germplasm. CryoLetters 22:199–208

    CAS  PubMed  Google Scholar 

  • Harding K, Millam S (2000) Analysis of chromatin, nuclear DNA and organelle composition in somatic hybrids between Solanum tuberosum and Solanum sanctae-rosae. Theor Appl Genet 101:939–947. doi:10.1007/s001220051565

    Article  CAS  Google Scholar 

  • Hazubska-Przbyl T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell Tiss Organ Cult 102:35–44. doi:10.1007/s11240-010-9701-0

    Article  Google Scholar 

  • Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Ree JF, Guerra MP (2013) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tiss Organ Cult 114:365–372. doi:10.1007/s11240-013-0331-1

    Article  CAS  Google Scholar 

  • Hong SR, Yin MH (2009) High-efficiency vitrification protocols for cryopreservation of in vitro grown shoot tips of rare and endangered plant Emmenopterys henryi Oliv. Plant Cell Tiss Organ Cult 99:217–226. doi:10.1007/s11240-009-9598-7

    Article  CAS  Google Scholar 

  • Hong SR, Yin MH, Shao XH, Wang AP, Xu WH (2009) Cryopreservation of embryogenic callus of Dioscorea bulbifera by vitrification. CryoLetters 30:64–75

    CAS  PubMed  Google Scholar 

  • Huang CN, Wang JH, Yan QS, Zhang ZQ, Yan QF (1995) Plant regeneration from rice (Oryza sativa L.) embryogenic suspension cells cryopreserved by vitrification. Plant Cell Rep 14:730–734. doi:10.1007/BF00232657

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Harata K, Mili M, Sakai A, Yoshimatsu K, Shimomura K (1997) Cryopreservation of zygotic embryos of Japanese terrestrial orchid (Bletilla striata) by vitrification. Plant Cell Rep 16:754–757. doi:10.1007/s002990050314

    Article  CAS  Google Scholar 

  • Jiwu Z, Ganjun Y, Qiuming Z (2007) Micropropagation and cryopreservation of in vitro shoot tips of ‘Suizhonghong’ papaya. Acta Hortic 760:217–224

    Google Scholar 

  • Johnston JW, Benson EE, Harding K (2009) Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol Bioch 4:123–131

    Article  Google Scholar 

  • Kaity A, Ashmore SE, Drew RA, Dulloo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539. doi:10.1007/s00299-008-0558-1

    Article  CAS  PubMed  Google Scholar 

  • Khawniam T, Te-chato S (2012) Cryopreservation of embryogenic callus of hybrid tenera oil palm by dehydration technique and evaluation of somaclonal variation by SSR marker. J Agri Technol 8:2115–2125

    CAS  Google Scholar 

  • Kim HH, Lee YG, Park SU, Lee SC, Baek HJ, Cho EG, Engelmann F (2009) Development of alternative loading solutions in droplet-vitrification procedures. CryoLetters 30:291–299

    CAS  PubMed  Google Scholar 

  • Kohmura H, Ikeda Y, Sakai A (1994) Cryopreservation of apical meristems of Japanese shallot (Allium wakegi) by vitrification and subsequent high plant regeneration. CryoLetters 15:289–298

    Google Scholar 

  • Konan EK, Durand-Gasselin T, Koadio YJ, Niamké AC, Dumet D, Duval Y, Rival A, Engelmann F (2007) Field development of oil palms (Elaeis guineensis Jacq.) originating from cryopreserved stabilized polyembryonic cultures (SPCs). CryoLetters 28:377–386

    CAS  PubMed  Google Scholar 

  • Le Bras C, Le Besnerais PH, Hamama L, Grapin A (2014) Cryopreservation of ex-vitro-grown Rosa chinensis ‘Old Blush’ buds using droplet-vitrification and encapsulation-dehydration. Plant Cell Tiss Organ Cult 116:235–242. doi:10.1007/s11240-013-0400-5

    Article  Google Scholar 

  • Leunufna S, Keller ERJ (2003) Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Rep 21:1159–1166. doi:10.1007/s00299-003-0652-3

    Article  CAS  PubMed  Google Scholar 

  • Li MJ, Zhao XT, Hong SR, Zhang XL, Li P, Liu J, Xie CH (2009) Cryopreservation of plantlet nodes of Dioscorea opposita Thunb. using vitrification method. CryoLetters 30:19–28

    PubMed  Google Scholar 

  • Martinez-Montero ME, Martinez J, Engelmann F (2008) Cryopreservation of sugarcane somatic embryos. CryoLetters 29:229–242

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13:442–446. doi:10.1007/BF00231963

    Article  CAS  PubMed  Google Scholar 

  • Mielke S (1991) Economic prospects for oilseeds, oils and fats toward the 21st century. In: Basiron Y and Ibrahim A (eds) The proceedings of the 1991 PORIM International Palm Oil Conference. Module IV: promotion and marketing. September 9–14, Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 1-16

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Organ Cult 28:261–266. doi:10.1007/BF00036122

    Article  Google Scholar 

  • Palanyandy SR, Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Aziz MA, Sarifa SRSA, Roowi SH (2013) In vitro developmental study of oil palm (Elaeis guineensis Jacq.) polyembryoids from cell suspension using scanning electron microscopy. Acta Physiol Plant 35:1727–1733. doi:10.1007/s11738-012-1201-x

    Article  CAS  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55. doi:10.1016/j.plantsci.2004.07.022

    Article  CAS  Google Scholar 

  • Pawłowska B, Szewczyk-Taranek B (2014) Droplet vitrification cryopreservation of Rosa canina and Rosa rubiginosa using shoot tips from in situ plants. Sci Hort 168:151–156. doi:10.1016/j.scienta.2013.12.016

    Article  Google Scholar 

  • Razaq M, Heikrujam M, Chetri SK, Agrawal V (2013) In vitro clonal propagation and genetic fidelity of the regenerants of Spilanthes calva DC. using RAPD and ISSR marker. Physiol Mol Biol Plants 19:251–260. doi:10.1007/s12298-012-0152-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhoud PJ, Schrijnemakers EWM, Iren F, Kijne JW (1995) Vitrification and a heat-shock treatment improve cryopreservation of tobacco cell suspension compared to two-step freezing. Plant Cell Tiss Organ Cult 42:261–267. doi:10.1007/BF00029997

    Article  Google Scholar 

  • Ryynänen L, Aronen T (2005) Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tiss Organ Cult 83:21–32. doi:10.1007/s11240-005-3396-7

    Article  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33. doi:10.1007/BF00232130

    Article  CAS  PubMed  Google Scholar 

  • Sant R, Panis B, Taylor M, Tyagi A (2008) Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tiss Organ Cult 92:107–111. doi:10.1007/s11240-007-9302-8

    Article  Google Scholar 

  • Schäfer-Menuhr A, Schumacher HM, Mix-Wagner G (1997) Cryopreservation of potato cultivars: design of a method for routine application in genebanks. Acta Hortic 447:477–482

    Google Scholar 

  • Senula A, Keller JER, Sanduijav T, Yohannes T (2007) Cryopreservation of cold-acclimated mint (Mentha spp.) shoot tips using a simple vitrification protocol. CryoLetters 28:1–12

    PubMed  Google Scholar 

  • Sopalun K, Kanchit K, Ishikawa K (2010) Vitrification-based cryopreservation of Grammatophyllum speciosum protocorm. CryoLetters 31:347–357

    CAS  PubMed  Google Scholar 

  • Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Sarifa SRSA, Roowi SH (2012) Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66:101–109. doi:10.1007/s10725-011-9633-7

    Article  CAS  Google Scholar 

  • Thormann I, Dulloo ME, Engels JMM (2006) Techniques of ex situ plant conservation. In: Henry R (ed) Plant Conservation genetics. Centre for Plant Conservation Genetics, Southern Cross University. The Haworth Press inc, Lismore, pp 7–36

    Google Scholar 

  • Tokatli OY, Akdemir H (2010) Cryopreservation of fraser Photinia (Photinia x fraseri Dress.) via vitrification-based one-step freezing techniques. CryoLetters 31:40–49

    CAS  PubMed  Google Scholar 

  • Turner S, Krauss SL, Bunn E, Senaratna T, Dixon K, Tan B, Touchell D (2001) Genetic fidelity and viability of Anigozanthos viridis following tissue culture, cold storage and cryopreservation. Plant Sci 161:1099–1106. doi:10.1016/S0168-9452(01)00519-2

    Article  CAS  Google Scholar 

  • Yin MH, Hong SR (2009) Cryopreservation of Dendrobium candidum Wall. ex Lindl. protocorm-like bodies by encapsulation-vitrification. Plant Cell Tiss Organ Cult 98:179–185. doi:10.1007/s11240-009-9550-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yayasan Felda, Malaysia, for the financial support through research grant, Dr. Sharifah SRSA and Dr. Siti Habsah from Felda Biotechnology Centre for the supply of cell suspension culture and Dr. Sanjoy Banerjee (Institute of Bioscience, Universiti Putra Malaysia) along with Dr. Kuttichanthran Subramaniam (Faculty of Veterinary Medicine, Universiti Putra Malaysia) for their assistance during genetic integrity study, and last but not the least, the Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia for the research facilities.

Conflict of interest

We, the authors of this article, declare that there is no conflict of interest, and we do not have any financial gain from it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Rani Sinniah.

Additional information

Handling Editor: Peter Nick

S. Gantait and U.R. Sinniah conceived the idea and designed the experiments. S. Gantait P. Suranthran and S.R. Palanyandy executed the experiments. S. Gantait, U.R. Sinniah and S. Subramaniam wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantait, S., Sinniah, U.R., Suranthran, P. et al. Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma 252, 89–101 (2015). https://doi.org/10.1007/s00709-014-0660-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0660-x

Keywords

Navigation