Skip to main content

Advertisement

Log in

Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Ca2+ is an ubiquitous intracellular molecule which is used as a second messenger to control many physiological activities in plant cells. In the present work, the relationship between calcium localization and the hypersensitive response (HR)—one of the most crucial and indispensable pathway to resist a pathogen—was studied in the wheat-wheat strip rust system using cytochemical technique. Our results show that calcium is involved in the interaction between wheat and wheat stripe rust. In the incompatible interaction associated with necrosis of host mesophyll cells, an influx of Ca2+ from the intercellular space to the cytoplasm and finally an efflux to the intercellular space again was detected in an incompatible interaction. Calcium precipitates were also observed in mesophyll cells adjacent to necrotic cells. On the contrary, calcium flow was not significantly altered in a compatible interaction. These results suggest that calcium might induce HR as a secondary messenger in the incompatible interaction of wheat and wheat stripe rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

dpi:

Days post inoculation

EGTA:

Ethylene glycol tetraacetic acid

GT:

Germ tube

HC:

Host cells

HMC:

Haustorial mother cells

hpi:

Hours post inoculation

HR:

Hypersensitive response

IH:

Infection hyphae

IS:

Intercellular space

IT:

Infection type

NC:

Necrotic cells

PAMP:

Pathogen-associated molecular patterns

PR:

Pathogenesis-related

Pst :

Puccinia striiformis Westend f. sp. tritici Erikss.

PTI:

PAMP-triggered immunity

ROS:

Reactive oxygen species

SV:

Substomatal vesicle

TEM:

Transmission electron microscopy

WGA:

Wheat germ agglutinin

References

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, Bodman SV, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel and innate immunity. Plant Cell 19:1081–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Appleton J, Morris DC (1979) The use of the potassium pyroantimonate-osmium method as a means of identifying and localizing calcium at the ultrastructural level in the cells of calcifying systems. J Histochem Cytochem 27:676–680

    Article  CAS  PubMed  Google Scholar 

  • Atkinson MM, Keppler LD, Orlandi EW, Baker CJ, Mischke CF (1990) Involvement of plasma membrane calcium influx in bacterial induction of the K+/H+ and hypersensitive responses in tobacco. Plant Physiol 92:215–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atkinson MM, Midland SL, Sims JJ, Keen NT (1996) Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4. Plant Physiol 112:297–302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  PubMed  Google Scholar 

  • Bateman DF (1964) An induced mechanism of tissue resistance to polygalacturonase in Rhizoctonia-infected hypocotyls of bean. Phytopathology 54:438–445

    CAS  Google Scholar 

  • Bibikova TN, Zhigilei A, Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203:495–505

    Article  CAS  PubMed  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonilla I, El-Hamdaoui A, Bolaños L (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97–107

    Article  CAS  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  • Bux H, Rasheed A, Siyal MA, Kazi AG, Napar AA, Mujeeb-Kazi A (2012) An overview of stripe rust of wheat (Puccinia striiformis f. sp. tritici) in Pakistan. Arch Phytopathol Plant Protect 45:2278–2289

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of strip rust (Puccinia striiformis f. sp. Tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Cotte BV, Langebartels C, Kangasjärvi J, Inzé D, Breusegem FV (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  PubMed  Google Scholar 

  • David DJ (1959) Determination of calcium in plant material by atomic-absorption spectrophotometry. Analyst 84:536–545

    Article  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M (1997) First evidence of a calcium transient in flowering plants at fertilization. Development 124:2867–2874

    CAS  PubMed  Google Scholar 

  • Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P, Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J, Mur LA, Petersen M, Smertenko A, Taliansky M, Van Breusegem F, Wolpert T, Woltering E, Zhivotovsky B, Bozhkov PV (2011) Morphological classification of plant cell deaths. Cell Death Differ 18:1241–1246

    Article  PubMed Central  PubMed  Google Scholar 

  • Eastell R, Vieira NE, Yergey AL (1989) One-day test using stable isotopes to measure true fractional calcium absorption. J Bone Miner Res 4:463–468

    Article  CAS  PubMed  Google Scholar 

  • Egrie JC, Campbell JA, Flangas L, Siegel FL (1977) Regional, cellular and subcellular distribution of calcium-activated cyclic nucleotide phosphodiesterase and calcium-dependent regulator in porcine brain. J Neurosci 28:1207–1213

    CAS  Google Scholar 

  • Favali MA, Gaggiato G (1986) Subcellular distribution of potassium antimonate precipitates in plant tissue 3. Ginkgo Biloba L. leaves. Cytobios 48:133–141

    CAS  Google Scholar 

  • Ferguson IB (1984) Calcium in plant senescence and fruit ripening. Plant Cell Environ 7:477–489

    Article  CAS  Google Scholar 

  • Gao G, Jin LP, Xie KY, Qu DY (2009) The potato StLTPa7 gene displays a complex Ca-associated pattern of expression during the early stage of potato-Ralstonia solanacearum interaction. Mol Plant Pathol 10:15–27

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Yun BW, Loake GJ (2000a) Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J 24:569–582

    Article  CAS  PubMed  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000b) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    Article  CAS  PubMed  Google Scholar 

  • Harder DE, Samborski DJ, Rohringer R, Rimmer SR, Kim WK, Chong J (1979) Electron microscopy of susceptible and resistant near-isogenic (sr6/Sr6) lines of wheat infected by Pucciizia grainiitis tritici. III. Ultrastructure of incompatible interactions. Can J Bot 57:2626–2634

    Article  Google Scholar 

  • Harrison BD, Stefanac Z, Roberts IM (1970) Role of mitochondria in the formation of X-bodies in cells of Nicotiana clevelandii infected by tobacco rattle viruses. J Gen Virol 6:127–140

    Article  Google Scholar 

  • Hayat MA (1975) Positive staining for electron microscopy. Van Nostrand Reinhold Company, New York, pp 80–93

    Google Scholar 

  • Heath MC, Nimichuk ZL, Xu H (1997) Plant nuclear migrations as indications of critical interactions between resistant and susceptible cowpea epidermal cells and invasion hyphae of the cowpea rust fungus. New Phytol 135:689–700

    Article  Google Scholar 

  • Heller A, Witt-Geiges T (2013) Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS ONE 8. doi:10.1371/journal.pone.0072292

  • Hepler PK (1994) The role of calcium in cell division. Cell Calcium 16:322–330

    Article  CAS  PubMed  Google Scholar 

  • Hoth M, Button DC, Lewis RS (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A 97:10607–10612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Issa AA, Abdel-Basset R, Adam MS (1995) Abolition of heavy toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann Bot-London 75:189–192

    Article  CAS  Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2 - from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci 94:4800–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson SL, Heath IB (1993) Roles of calcium ions in hyphal tip growth. Microbiol Rev 57(2):367–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang YW, Huang BR (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349

    Article  CAS  PubMed  Google Scholar 

  • Kang ZS, Huang LL, Buchenauer H (2002) Ultrastructural changes and localization of lignin and callose in compatible and incompatible interactions between wheat and Puccinia striiformis. J Plant Dis Prot 109:25–37

    CAS  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798–809

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazarovits G, Higgins V (1976) Ultrastructure of susceptible, resistant, and immune reactions of tomato to races of Cladosporium fulvum. Can J Bot 54:235–249

    Article  Google Scholar 

  • Lee TF, McNellis TW (2009) Evidence that the BONZAI1/COPINE1 protein is a calcium and pathogen-responsive defense suppressor. Plant Mol Biol 69:155–166

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lin Y, Heath RM, Zhu MX, Yang Z (1999) Control of pollen tube tip growth by a rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11:1731–1740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968-1987. US Dep Agric Agric Res Serv Tech Bull 1788

  • Ma Q, Shang HS (2009) Ultrastructure of stripe rust (Puccinia striiformis f. sp. tritici) interacting with slow-rusting, highly resistant, and susceptible wheat cultivars. J Plant Pathol 91:597–606

    Google Scholar 

  • Nemchinov LG, Shabala L, Shabala S (2008) Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell Physiol 49:40–46

    Article  CAS  PubMed  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AM, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed Central  PubMed  Google Scholar 

  • Nürnberger T, Scheel D (2001) Signal transmission in the plant immune response. Trends Plant Sci 6:372–379

    Article  PubMed  Google Scholar 

  • Otulak K, Garbaczewska G (2010) Ultrastructural events during hypersensitive response of potato cv. Rywal infected with necrotic strains of potato virus Y. Acta Physiol Plant 32:635–644

    Article  Google Scholar 

  • Palukaitis P, Roessinek MJ, Dietzgen RG (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348

    Article  CAS  PubMed  Google Scholar 

  • Pitt D, Ugalde UO (1984) Calcium in fungi. Plant Cell Environ 7:467–475

    Article  CAS  Google Scholar 

  • Ranf S, Eschen-Lippold L, Pecher P, Lee J, Scheel D (2011) Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J 68:100–113

    Article  CAS  PubMed  Google Scholar 

  • Rathore VS, Bajaj YP, Wittwer SH (1972) Subcellular localization of zinc and calcium in bean (Phaseolus vulgaris L.) tissues. Plant Physiol 49:207–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–633

    Article  CAS  Google Scholar 

  • Slocum RD, Roux SJ (1982) An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J Histochem Cytochem 30:617–629

    Article  CAS  PubMed  Google Scholar 

  • VendenBosch KA, Sherrier DJ, Dreyer DA (1995) Light microscopic applications in immunocytochemistry. In: Gelvin SB, Schilperoort RA (eds) Plant Mol Biol Manual, 2nd edn. Kluwer Academic, Dordrecht, pp 1–18

    Google Scholar 

  • Wang CF (2008) Studies on histology and cytochemistry of oxidative burst during wheat-Puccinia striiformis f. sp. tritici interaction (in Chinese). Dissertation, Northwest A&F University

  • Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS (2007) Histochemical studies on the accumulation of reactive oxygen species (O2 and H2O2) in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 71:230–239

    Article  CAS  Google Scholar 

  • Wang CF, Huang LL, Zhang HC, Han QM, Buchenauer H, Kang ZS (2010) Cytochemical localization of reactive oxygen species (O2 and H2O2) and peroxidase in the incompatible and compatible interaction of wheat-Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 74:221–229

    Article  CAS  Google Scholar 

  • Whitaker M (2010) Calcium in living cells. Elsevier Academic Press, Burlington

    Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10:585–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    Article  CAS  PubMed  Google Scholar 

  • Zhang HC (2012) Histological and cytological analyses of adult plant resistance to wheat stripe rust and characterization of non-host resistance of wheat to Uromyces fabae (in Chinese). Dissertation, Northwest A&F University

  • Zhang HC, Wang CF, Cheng YL, Chen XM, Han QM, Huang LL, Wei GR, Kang ZS (2012) Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Rep 31:2121–2137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been financially supported by the National Key Basic Research Program of China (2013CB127700), Nature Science Foundation of China (No. 30571205; No. 30900931), 111 Project from the Ministry of Education of China (B07049), and talent-funded project of Northwest A&F University (No. 01140510).

Conflict of interest

All authors declare that they have no conflict of interest. We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchang Zhang or Zhensheng Kang.

Additional information

Handling Editor: Adrienne R. Hardham

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Wang, C., Jiao, M. et al. Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici . Protoplasma 252, 103–116 (2015). https://doi.org/10.1007/s00709-014-0659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0659-3

Keywords

Navigation