Skip to main content
Log in

Anatomical and biochemical studies of bicolored flower development in Muscari latifolium

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The inflorescence of the broad-leafed grape hyacinth, Muscari latifolium, shows an interesting, two-tone appearance with the upper flowers being pale blue and the lower ones purple. To elucidate the mechanism of the differential color development, anatomical research was carried out and a cytological study of the colored protoplasts in which the shapes of the cells accumulating anthocyanin were observed by scanning electron microscopy. Next, vacuolar pH was recorded using a pH meter with a micro combination pH electrode, and the sap’s metal-ion content was measured by inductively coupled plasma mass spectrometry. The anthocyanin and co-pigment composition was determined by high-performance liquid chromatography (HPLC). Chemical analyses reveal that the difference in metal-ion content of the two parts was not great. The vacuolar pHs of the upper and lower flowers were 5.91 and 5.84, respectively, with the difference being nonsignificant. HPLC results indicate that the dihydroflavonol and flavonol contents are also very similar in the two sorts of flower. However, the upper flowers contained only delphinidin, whereas the lower flowers also contained cyanidin. The total anthocyanin content in the lower flowers was 4.36 mg g−1, which is approximately seven times higher than in the upper flowers, while the delphinidin content is four times higher. Quantitative real-time PCR analysis established that the two-tone flower was a result of different expressions of the F35H, F3H and DFR genes, and these lead to different amounts of anthocyanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RHSCC:

Royal Horticultural Society color chart

CIE:

International Commission on Illumination

References

  • Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE,Davies KM (2009) Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany 60:2191–2202

    Google Scholar 

  • Biolley JP, Jay M (1993) Anthocyanins in modern roses: chemical and colorimetric features in relation to the colour range. J Exp Bot 44:1725–1734

    Article  CAS  Google Scholar 

  • Boyde A, Wood C (1969) Preparation of animal tissues for surface-scanning electron microscopy. J Microsc 90:221–249

    Article  PubMed  CAS  Google Scholar 

  • Doussi MA, Thanos CA (2002) Ecophysiology of seed germination in Mediterranean geophytes. 1. Muscari spp. Seed Sci Res 12:193–201

    Article  Google Scholar 

  • Forkmann G, Heller W (1999) Biosynthesis of flavonoids. In: Sankawa U (ed) Comprehensive natural products chemistry, volume 1. Polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier, Oxford, pp 713–748

    Google Scholar 

  • Goto T, Kondo T (1991) Structure and molecular stacking of anthocyanins-flower color variation. Angew Chem Int Ed Engl 30:17–33

    Article  Google Scholar 

  • Hanbury A, Serra J (2002) Mathematical morphology in the CIELAB space. Image Anal Stereol 21:201–206

    Article  Google Scholar 

  • Hashimoto F, Tanaka M, Maeda H, Fukuda S, Shimizu K, Sakata Y (2002) Changes in flower coloration and sepal anthocyanins of Cyanic delphinium cultivars during flowering. Biosci Biotechnol Biochem 66:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Holton TA,Tanaka Y (1994) Blue roses—a pigment of our imagination? Trends Biotechnol. 12:40–42

    Google Scholar 

  • Ito D, Shinkai Y, Kato Y, Kondo T, Yoshida K (2009) Chemical studies on different color development in blue- and red-colored sepal cells of Hydrangea macrophylla. Biosci Biotechnol Biochem 73:1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T (1992) Structural basis of blue-colour development in flower petals from Commelina communis. Nature 358:515–518

    Article  CAS  Google Scholar 

  • Kondo T, Ueda M, Isobe M (1998) A new molecular mechanism of blue color development with protocyanin, a supramolecular pigment from cornflower, Centaurea cyanus. Tetrahedron Lett 49:8307–8310

    Article  Google Scholar 

  • Kondo T, Ueda M, Tamura H, Yoshida K, Isobe M, Goto T (1994) Composition of protocyanin, a self-assembled supramolecular pigment form the blue cornflower Centaurea cyanus. Angew Chem Int Ed Engl 33:978–979

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Momonoi K, Tsuji T, Kazuma K, Yoshida K (2012) Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals. Biosci Biotechnol Biochem 76:319–325

    Article  PubMed  CAS  Google Scholar 

  • Momonoi K, Yoshida K, Mano S, Takahashi H, Nakamori C, Shoji K, Nitta A, Nishimura M (2009) A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation. Plant J 59:437–447

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Asano S, Kobayashi H, Nakano M (2002) Analyses of anthocyanidins and anthocyanins in flowers of Muscari spp. Niigata Daigaku Nogakubu Kenkyu Hokoku 55:13–18

    CAS  Google Scholar 

  • Noda K, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661–664

    Article  PubMed  CAS  Google Scholar 

  • Quintana A, Albrechtova´ J, Griesbach RJ, Freyre R (2007) Anatomical and biochemical studies of anthocyanidins in flowers of Anagallis monelli L. (Primulaceae) hybrids. Scientia Hortic-Amsterdam 112:413–421

    Article  CAS  Google Scholar 

  • Schreiber HD, Jones AH, Lariviere CM, Mayhew KM, Cain JB (2011) Role of aluminum in red-to-blue color changes in Hydrangea macrophylla sepals. Biometals 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Schreiber HD, Swink AM, Godsey TD (2010) The chemical mechanism for Al3+ complexing with delphinidin: a model for the bluing of hydrangea sepals. J Inorg Biochem 104:732–739

    Article  PubMed  CAS  Google Scholar 

  • Shiono M, Matsugaki N, Takeda K (2005) Phytochemistry: structure of the blue cornflower pigment. Nature 436:791

    Article  PubMed  CAS  Google Scholar 

  • Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K (2007) Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant Cell Physiol 48:243–251

    Article  PubMed  CAS  Google Scholar 

  • Shoji K, Momonoi K, Tsuji T (2010) Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. ‘Murasakizuisho’. Plant Cell Physiol 51:215–224

    Article  PubMed  CAS  Google Scholar 

  • Takeda K, Osakabe A, Saito S, Furuyama D, Tomita A, Kojima Y et al (2005) Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phyotochemistry 66:1607–1613

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin BiotechI 19:190–197

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Phil Trans R Soc B 368:20120432

    Article  PubMed  Google Scholar 

  • Torskangerpoll K, Nørbæk R, Nodland E, Øvstedal DO, Andersen ØM (2005) Anthocyanin content of Tulipa species and cultivars and its impact on tepal colours. Biochem Syst Ecol 33:499–510

    Article  CAS  Google Scholar 

  • Yoshida K, Ito D, Shinkai Y, Kondo T (2008) Change of color and components in sepals of chameleon hydrangea during maturation and senescence. Phytochemistry 69:3159–3165

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, Nishimura M, Kondo T (2005) The involvement of tonoplast proton pumps and Na + (K+)/H + exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. Heavenly Blue. Plant Cell Physiol 46:407–415

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kitahara S, Ito D, Kondo T (2006) Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis. Phytochemistry 67:992–998

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Mori M, Kondo T (2009a) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:884–915

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Miki N, Momonoi K, Kawachi M, Katou K, Okazaki Y, Uozumi N, Maeshima M, Kondo T (2009b) Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue. P Jpn Acad A-math 85:187–197

    Article  CAS  Google Scholar 

  • Yoshida K, Osanai M, Kondo T (2003a) Mechanism of dusky reddish-brown “Kaki” color development of Japanese morning glory, Ipomoea nil cv. Danjuro. Phytochemistry 63:721–726

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Toyama Y, Kameda K, Kondo T (2003b) Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol 4:262–268

    Article  Google Scholar 

  • Yoshida K, Kondo T, Okazaki Y, Katou K (1995) Cause of blue petal colour. Nature 373:291

    Article  CAS  Google Scholar 

  • Zhang J, Wang LS, Gao JM, Shu QY, Li C, Yao J, Hao Q, Zhang JJ (2008) Determination of anthocyanins and exploration of relationship between their composition and petal coloration in crape myrtle (Lagerstroemia hybrid). J ntegr Plant Biol 50:581–588

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Weirong Xu at Ningxia University for helpful suggestions. This work was supported by the National Natural Science Foundation of China (grant no. 31170652).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yali Liu or Yuejin Wang.

Additional information

Handling Editor: Hanns H. Kassemeyer

Yinyan Qi and Qian Lou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Y., Lou, Q., Li, H. et al. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium . Protoplasma 250, 1273–1281 (2013). https://doi.org/10.1007/s00709-013-0509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0509-8

Keywords

Navigation