Skip to main content
Log in

A non-surgical method for induction of lung cancer in Wistar rats using a combination of NNK and high dietary fats

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Lung cancer is one of the most common malignant neoplasms all over the world. Smoking and a number of constituents of tobacco are responsible for development of lung tumours; however, the deleterious effects of tobacco-derived carcinogen, nitrosamine 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone (NNK)) remain unmatched. We report the development of a novel rodent model by administering multiple doses of NNK to male Wistar rats and feeding them with high-fat and low-protein diet. Tumour cells in lungs were observed in approximately 98 % rats after 8 months of NNK treatment, as evident by histopathological analysis. This rodent model showed slow progression of lung tumours which has helped us to assess early indicators of oxidative damage in lungs by studying the levels of lipid peroxidation and antioxidant parameters. LPO was elevated by 46.94 %, SOD, CAT, GSH and GR activity was decreased by 48.67 %, 22.04 %, 21.46 % and 20.85 %, respectively in serum of NNK treated rats when compared with control. These findings suggest that increased oxidative stress can represent a risk factor for the development of chronic disease in early future. This new animal model is an attempt to greatly facilitate studies of the pathophysiology, biochemistry and therapy of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abou-Ghalia AH, Found IM (2000) Glutathione and its metabolizing enzymes in patients with different benign and malignant diseases. Clin Biochem 33:657–662

    Article  PubMed  CAS  Google Scholar 

  • Akopyan G, Bonavida B (2006) Understanding tobacco smoke carcinogen NNK and lung tumorigenesis (Review). Int J Oncol 29:745–752

    PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow. Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  • Batcioglu K, Mehmet N, Ozturk IC et al (2006) Lipid peroxidation and antioxidant status in stomach cancer. Cancer Investig 24:18–21

    Article  CAS  Google Scholar 

  • Belinsky SA, White CM, Boucheron JA, Richardson FC, Swenberg JA, Anderson M (1986) Accumulation and persistence of DNA adducts in respiratory tissue of rats following multiple administrations of the tobacco specific carcinogen 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone. Cancer Res 46:1280–1284

    PubMed  CAS  Google Scholar 

  • Belinsky SA, Walker VE, Maronpot RR, Swenberg JA, Anderson MW (1987) Molecular dosimetry of DNA adduci formation and cell toxicity in rat nasal mucosa following exposure to the tobacco specific nitrosamine 4-(Ar-methyl-/V-nitrosamino)-l-(3-pyridyl)-l-butanone and their relationship to induction of neoplasia. Cancer Res 47:6058–6065

    PubMed  CAS  Google Scholar 

  • Beltowski J, Wojcicka G, Gorny D, Marciniak A (2000) The effect of dietary induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 51:883–896

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Chaudhary N, Malik S, Katare DP, Jain SK (2012) Proteomic analysis of differentially expressed serum proteins in lung cancer. Cent Eur J Biol 7:343–353

    Article  CAS  Google Scholar 

  • Boisio ML, Merlo F, Martines H, Esposito M (1990) Blood levels of reduced and oxidized glutathione in malignant and non-malignant human colorectal lesions. Eur J Cancer 26:89–91

    Article  PubMed  CAS  Google Scholar 

  • Buzby GP, Mullen JL, Steih TP, Roasto EF (1980) Host tumor interactions and nutrient supply. Cancer 45:2940–2947

    Article  PubMed  CAS  Google Scholar 

  • Cerutti PA, Trump BF (1991) Inflammation and oxidative stress in carcinogenesis. Cancer cells 3:1–7

    PubMed  CAS  Google Scholar 

  • Chen CB, Hecht SS, Hoffmann D (1978) Metabolic n-hydroxylation of the tobacco-specific carcinogen A/'-nitrosonornicotine. Cancer Res 38:3639–3645

    PubMed  CAS  Google Scholar 

  • Chuang CH, Hu ML (2006) Synergistic DNA damage and lipid peroxidation in cultured human white blood cells exposed to 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone and ultraviolet A. Environ Mol Mutagen 47:73–81

    Article  PubMed  CAS  Google Scholar 

  • Claiborne A (1985) Handbook of methods for oxygen radical research. In: Greenwald RA (Ed) CRC. CRC Press, Boca Raton, pp 283–284

  • Comporti M (1985) Biology of disease: lipid peroxidation and cellular damage in toxic liver injury. Lab Investig 53:599–623

    PubMed  CAS  Google Scholar 

  • Cook RL, Miller YE, Bunn PA Jr (1993) Small cell lung cancer; etiology, biology, clinical features, staging and treatment. Curr Probl Cancer 17:71–141

    Article  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  • Cui X (2012) Reactive oxygen species: the Achilles’ heel of cancer cells? Antioxid Redox Signal 16(11):1212–1214

    Article  PubMed  CAS  Google Scholar 

  • Della RF, Granata A, Saija A et al (2000) SH groups and glutathione in cancer patient's blood. Anticancer Res 20:1595–1598

    Google Scholar 

  • Diplock AT, Rice-Evans AC, Burton RH (1994) Is there a significant role for lipid peroxidation in the causation of malignancy and for antioxidants in cancer prevention. Cancer Res 54:19525–19565

    Google Scholar 

  • Eadie JS, Conrad M, Toorchen D, Topai M (1984) Mechanism of mutagenesis by O6-methylguanine. Nature 308:201–203

    Article  PubMed  CAS  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Investig 47:412–426

    PubMed  CAS  Google Scholar 

  • Goodman MF, Hankin JH, Wilkens LR, Kolonel LN (1992) High-fat foods and the risk of lung cancer. Epidemiology 3:288–299

    Article  PubMed  CAS  Google Scholar 

  • Guner G, Iskel H, Oto O, Hazan E, Acikel U (1996) Evaluation of some antioxidant enzymes in lung carcinoma tissue. Cancer Lett 103:233–239

    Article  PubMed  CAS  Google Scholar 

  • Hall JA, Saffhill R (1983) The incorporation of O8-methyldeoxyguanosine and O'-methyldeoxythymidine monophosphates into DNA by DNA polymerase I and a. Nucleic Acids Res 77:4185–4193

    Article  Google Scholar 

  • Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet 344:721

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70(5):257–265

    Article  PubMed  Google Scholar 

  • Hecht SS (1998) Biochemistry, biology and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11:559–603

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744

    Article  PubMed  CAS  Google Scholar 

  • Hecht SS, Young R, Chen CB (1980) Metabolism in the F344 rat of 4-(methyl-N-nitrosamino-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Cancer Res 40:4144–4150

    PubMed  CAS  Google Scholar 

  • Hecht SS, Trushin N, Castonguay A, Rivenson A (1986) Comparative tumorigenecity and DNA methylation in F344 rats by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone and N-nitrosodiethylamine. Cancer Res 46:498–502

    PubMed  CAS  Google Scholar 

  • Hecht SS, Carmella SG, Kenney PM, Low SH, Arakawa K, Yu MC (2004) Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone in Singapore Chinese. Cancer Epidemiol Biomarkers Prev 13:997–1004

    PubMed  CAS  Google Scholar 

  • Ho JCM, Zheng S, Comhair SAA, Farver C, Erzurum SC (2001) Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res 61:8578–8585

    CAS  Google Scholar 

  • Hoffmann D, Rivenson A, Amin S, Hecht SS (1984) Dose-response study of the carcinogenicity of tobacco-specific N-nitrosamines in F344 rats. J Cancer Res Clin Oncol 108:81–86

    Google Scholar 

  • Hoffmann D, Rivenson A, Abbi R, Wynder EL (1993) A study of tobacco carcinogenesis: effect of the fat content of the diet on the carcinogenic activity of 4-(methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone in F344 rats. Cancer Res 53:2758–2761

    PubMed  CAS  Google Scholar 

  • Huang P, Li F, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  PubMed  CAS  Google Scholar 

  • Hussain SP, Hofseth HCC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285

    Article  PubMed  CAS  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2007) Smokeless tobacco and some tobacco-specific N nitrosamines. IARC Monogr Eval Carcinog Risks Hum 89:1–592

    Google Scholar 

  • Jaruga P, Zastawny TH, Skokowski J, Dizdaroglu M, Olinski R (1994) Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett 341:59–64

    Article  PubMed  CAS  Google Scholar 

  • Kayanar H, Meral M, Turhan H, Keles M, Celik G et al (2005) Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett 227:133–139

    Article  Google Scholar 

  • Kaynak K (2002) The role of oxidative damage in lung cancer. Solunum 4:468–473

    Google Scholar 

  • Kumaraguruparan R, Subapriya R, Kabalimoorthy J, Nagini S (2002) Antioxidant profile in the circulation of patients with fibroadenoma and adenocarcinoma of the breast. Clin Biochem 35:275–279

    Article  PubMed  CAS  Google Scholar 

  • Lang CA, Naryshkin S, Schneider DL, Mills BJ (1992) Lindeman RD (1992) Low blood glutathione levels in healthy aging adults. J Lab Clin Med 120:720–725

    PubMed  CAS  Google Scholar 

  • Lin CC, Yin MC (2007) B vitamins deficiency and decreased anti-oxidative state in patients with liver cancer. Eur J Nutr 46:293–299

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol Reagent. J Biol Chem 193:255–275

    Google Scholar 

  • Mahapatra SK, Das S, Dey SK, Roy S (2008) Smoking induced oxidative stress in serum and neutrophil of the university students. Al Ameen J Med Sci 1:20–31

    CAS  Google Scholar 

  • Marnett LJ (2002) Oxy radicals, lipid peroxidation and DNA damage. Toxicology 181(182):219–222

    Article  PubMed  Google Scholar 

  • Minna JD, Roth JA, Gazdar AF (2002) Focus on lung cancer. Cancer Cell 1:49–52

    Article  PubMed  CAS  Google Scholar 

  • Mohandas J, Marshall JJ, Duggin GG, Horvath JS, Tiller D (1984) Low activities of glutathione-related enzymes as factors in the genesis of urinary bladder cancer. Cancer Res 44:5086–5091

    PubMed  CAS  Google Scholar 

  • Moron MS, Kepierre JW, Mannervick B (1979) Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–68

    Article  PubMed  CAS  Google Scholar 

  • Morse MA, Wang CX, Stoner GD, Mandal S, Conran PB, Amin SG, Hecht SS, Chung FL (1989) Inhibition of 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone-induced DNA adduct formation and tumorigenecity in the lung of F344 rats by dietary phenethyl isothiocyanate. Cancer Res 49:549–553

    PubMed  CAS  Google Scholar 

  • Motadi LR, Misso NL, Dlamini Z, Bhoola KD (2007) Molecular genetics and mechanisms of apoptosis in carcinomas of the lung and pleura: therapeutic targets. Int Immunopharmacol 14:1934–1947.

    Google Scholar 

  • Nandi A, Chatterjee IB (1988) Assay of superoxide dismutase activity in animal tissues. J Biosci 3:305–315

    Article  Google Scholar 

  • Niederhofer LJ, Daniels JS, Rauzer CA, Greene RE, Marnett LJ (2003) Malonaldehyde, a product of lipid peroxidation is mutagenic in human cells. J Biol Chem 278:31426–31433

    Article  Google Scholar 

  • Oshima H, Tademichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417:3–11

    Article  Google Scholar 

  • Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P (2002) Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 21:7435–7451

    Article  PubMed  CAS  Google Scholar 

  • Reddy BS (1992) Animal experimental evidence on macronutrients and cancer. In: Micozzi MS, Moon TE (eds) Macronutrients. Dekker, New York, pp 33–54

    Google Scholar 

  • Rodin SN, Rodin AS (2005) Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol 15:103–112

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Yadav P, Trivedi R, Bansal AK, Bhatnagar D (1995) Cadmium induced lipid peroxidation and the status of the antioxidant system in rat tissues. J Elem Med 9:144–147

    CAS  Google Scholar 

  • Scibior D, Skrzycki M, Podsiad M, Czeczot H (2008) Glutathione level and glutathione-dependent enzyme activities in blood serum of patients with gastrointestinal tract tumors. Clin Biochem 41:852–858

    Google Scholar 

  • Seddigheh RB, Sopori ML (2007) Early manifestations of NNK-induced lung cancer: role of lung immunity in tumor susceptibility. Am J Respir Cell Mol Biol 36:13–19

    Article  Google Scholar 

  • Tuck MK, Chan DW, Chia D. Godwin AK, Grizzle WE, Krueger KE, Rom W (2009) Sanda M., Sorbara L., Stass S., Wang W., Brenner D.E., Standard Operating Procedures for Serum and Plasma Collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group. J Proteome Res 8(1):113–117

    Google Scholar 

  • Viktorsson K, De Petris L, Lewensohn R (2005) The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun 331:868–880

    Article  PubMed  CAS  Google Scholar 

  • Weitberg AB, Corvese D (1993) Oxygen radicals potentiate the genetic toxicity of tobacco-specific nitrosamines. Clin Genet 43:88–91

    Article  PubMed  CAS  Google Scholar 

  • Welsch CW (1995) Review of the effects of dietary fat on experimental mammary gland tumorigenesis: role of lipid peroxidation. Free Radic Biol Med 18:757–773

    Article  PubMed  CAS  Google Scholar 

  • Wright JR, Colby HD, Miles PR (1981) Cytosolic factors which affect microsomal lipid peroxidation in lung and liver. Arch Biochem Biophys 206:296–304

    Article  PubMed  CAS  Google Scholar 

  • Wynder EL, Hoffmann D (1994) Smoking and lung cancer: scientific challenges and opportunities. Cancer Res 54:5284–5295

    PubMed  CAS  Google Scholar 

  • Wynder EL, Hebert JR, Kabat GC (1987) Association of dietary fat and lung cancer. J Natl Cancer Inst (Bethesda) 79:631–637

    CAS  Google Scholar 

  • Ye B, Zhang YX, Yang F, Chen HL, Xia D, Liu MQ, Lai BT (2007) Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate. BMC Cancer 7:90

    Article  PubMed  Google Scholar 

  • Yokohira M, Takeuchi H, Saoo K, Matsuda Y, Yamakawa K, Hosokawa K, Kuno T, Imaida K (2008) Establishment of a bioassay model for lung cancer chemoprevention initiated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in female A/J mice. Exp Toxicol Pathol 60:469–473

    Article  PubMed  CAS  Google Scholar 

  • Yuan JM, Koh WP, Murphy SE, Fan Y, wang R, Carmella SG, Han S, Wickham K, Gao YT, Yu MC, et al., (2009) Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 69(7):2990–5

  • Zheng HC, Takano Y (2011) NNK-induced lung tumors: a review of animal model. J Oncol. doi:10.1155/2011/635379

  • Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska G et al (2000) Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med 94:800–805

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research project from Defence Research and Development Organisation, Government of India (ERIP/ER/0703641/M/01/1050) to SKJ and DPK. We thank Dr. Ashok Mukherjee for the interpretation of the histopathological slides.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Jain.

Additional information

Handling Editor: Peter Nick

Authors Shilpa Bhatnagar and Naveen Chaudhary contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, S., Chaudhary, N., Katare, D.P. et al. A non-surgical method for induction of lung cancer in Wistar rats using a combination of NNK and high dietary fats. Protoplasma 250, 919–929 (2013). https://doi.org/10.1007/s00709-012-0478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0478-3

Keywords

Navigation