Skip to main content

Advertisement

Log in

Tanshinone IIA and astragaloside IV promote the migration of mesenchymal stem cells by up-regulation of CXCR4

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have a therapeutic potential to treat cardiovascular diseases. However, a significant barrier to MSC therapy is insufficient MSC engraftment in ischemic myocardium after systemic administration. Here, we investigated the modulatory effects of tanshinone IIA and astragaloside IV on the migration of MSCs and further defined the underlying mechanisms. CXCR4 expression in MSCs was determined by using flow cytometry, real-time PCR, and western blotting. The results showed that CXCR4 expression was significantly higher in tanshinone IIA- and astragaloside IV-stimulated MSCs than that of the control. MSC migration toward stromal cell-derived factor-1α (SDF-1α) was studied using a transwell system. MSCs treated with tanshinone IIA and astragaloside IV showed stronger migration than that of the control. Moreover, this enhanced migration ability was abrogated by a CXCR4 inhibitor. In a rat acute myocardial infarction model, MSCs stimulated with tanshinone IIA and astragaloside IV were stained with Dio and injected into model rats via the tail vein. Dio-labeled cells in myocardium sections were observed by fluorescence microscopy. Tanshinone IIA- and astragaloside IV-stimulated MSCs showed enhanced capacities to home to ischemic myocardium sites. In addition, there was no significant difference in the SDF-1α expression among groups. These data suggest that tanshinone IIA and astragaloside IV regulate MSC mobilization, at least partially via modulation of the CXCR4 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    Article  PubMed  CAS  Google Scholar 

  • Belema-Bedada F, Uchida S, Martire A, Kostin S, Braun T (2008) Efficient homing of multipotent adult mesenchymal stem cells depends on FROUNT-mediated clustering of CCR2. Cell Stem Cell 2:566–575

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, Liu X, Li Y, Ward CA, Melo LG, Kong D (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579

    Article  PubMed  CAS  Google Scholar 

  • Cilloni D, Carlo-Stella C, Falzetti F, Sammarelli G, Regazzi E, Colla S, Rizzoli V, Aversa F, Martelli MF, Tabilio A (2000) Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood 96:3637–3643

    PubMed  CAS  Google Scholar 

  • Fu J, Huang H, Liu J, Pi R, Chen J, Liu P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568:213–221

    Article  PubMed  CAS  Google Scholar 

  • Ge D, Liu X, Li L, Wu J, Tu Q, Shi Y, Chen H (2009) Chemical and physical stimuli induce cardiomyocyte differentiation from stem cells. Biochem Biophys Res Commun 381:317–321

    Article  PubMed  CAS  Google Scholar 

  • Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhang Z, Guo J, Ni A, Deb A, Zhang L, Mirotsou M, Pratt RE, Dzau VJ (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci 938:83–95

    Article  PubMed  CAS  Google Scholar 

  • Li N, Lu X, Zhao X, Xiang FL, Xenocostas A, Karmazyn M, Feng Q (2009a) Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells 27:961–970

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Guo J, Chang Q, Zhang A (2009b) Paracrine role for mesenchymal stem cells in acute myocardial infarction. Biol Pharm Bull 32:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Yang M, Du XM (2004) Herbal medicines for viral myocarditis. Cochrane Database Syst Rev CD003711

  • Meng D, Chen XJ, Bian YY, Li P, Yang D, Zhang JN (2005) Effect of astragalosides on intracellular calcium overload in cultured cardiac myocytes of neonatal rats. Am J Chin Med 33:11–20

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, Matsuda H (2002) Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 105:2556–2561

    Article  PubMed  CAS  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Article  PubMed  CAS  Google Scholar 

  • Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed  CAS  Google Scholar 

  • Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92:897–904

    Article  PubMed  Google Scholar 

  • Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4:102–106

    Article  PubMed  CAS  Google Scholar 

  • Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH, Mao N (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21:527–535

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Wang J, Zheng F, Kong X, Guo L, Yang J, Zhang L, Huang Y (2010) Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 339:107–118

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Minatoguchi S, Arai M, Uno Y, Nishida Y, Hashimoto K, Xue-Hai C, Fukuda K, Akao S, Takemura G, Fujiwara H (2002) Sheng-Mai-San is protective against post-ischemic myocardial dysfunction in rats through its opening of the mitochondrial KATP channels. Circ J 66:763–768

    Article  PubMed  Google Scholar 

  • Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z (2008) Dissection of mechanisms of Chinese medicinal formula Realgar–Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 105:4826–4831

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Shen F, Liang Y, Wang J (2011) Marrow-derived MSCs and atorvastatin improve cardiac function in rat model of AMI. Int J Cardiol 150:28–32

    Article  PubMed  Google Scholar 

  • Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645

    Article  PubMed  CAS  Google Scholar 

  • Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, Cheng YP (2007) Modification of alterations in cardiac function and sarcoplasmic reticulum by astragaloside IV in myocardial injury in vivo. Eur J Pharmacol 568:203–212

    Article  PubMed  CAS  Google Scholar 

  • Yoshida D, Koketshu K, Nomura R, Teramoto A (2010) The CXCR4 antagonist AMD3100 suppresses hypoxia-mediated growth hormone production in GH3 rat pituitary adenoma cells. J Neurooncol 100:51–64

    Article  PubMed  CAS  Google Scholar 

  • Zhang WD, Chen H, Zhang C, Liu RH, Li HL, Chen HZ (2006) Astragaloside IV from Astragalus membranaceus shows cardioprotection during myocardial ischemia in vivo and in vitro. Planta Med 72:4–8

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Liu Q, Lu L, Zhao X, Gao X, Wang Y (2011) Astragaloside IV stimulates angiogenesis and increases hypoxia-inducible factor-1alpha accumulation via phosphatidylinositol 3-kinase/Akt pathway. J Pharmacol Exp Ther 338:485–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. Hua-Han for his academic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wang.

Additional information

Handling Editor: Peter Nick

Juan Xie, Huan Wang, Tiebing Song, and Wen Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Wang, H., Song, T. et al. Tanshinone IIA and astragaloside IV promote the migration of mesenchymal stem cells by up-regulation of CXCR4. Protoplasma 250, 521–530 (2013). https://doi.org/10.1007/s00709-012-0435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0435-1

Keywords

Navigation