Skip to main content
Log in

Phylogenetic footprinting: a boost for microbial regulatory genomics

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Phylogenetic footprinting is a method for the discovery of regulatory elements in a set of homologous regulatory regions, usually collected from multiple species. It does so by identifying the best conserved motifs in those homologous regions. There are two popular sets of methods—alignment-based and motif-based, which are generally employed for phylogenetic methods. However, serious efforts have lacked to develop a tool exclusively for phylogenetic footprinting, based on either of these methods. Nevertheless, a number of software and tools exist that can be applied for prediction of phylogenetic footprinting with variable degree of success. The output from these tools may get affected by a number of factors associated with current state of knowledge, techniques and other resources available. We here present a critical apprehension of various phylogenetic approaches with reference to prokaryotes outlining the available resources and also discussing various factors affecting footprinting in order to make a clear idea about the proper use of this approach on prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Baumbach J (2007) RegNet 4.0—a reference database for corynebacterial gene regulatory networks. BMC Bioinformatics 8:429

    Article  Google Scholar 

  • Blanchette M, Kwong S, Tompa M (2003) An empirical comparison of tools for phylogenetic footprinting. Third IEEE Symposium on Bioinformatics and Bioengineering, pp 69–78

  • Blanchette M, Tompa M (2002) Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res 12:739–748

    Article  PubMed  CAS  Google Scholar 

  • Blanchette M, Tompa M (2003) FootPrinter: a program designed for phylogenetic footprinting. Nucleic Acids Res 31:3840–3842

    Article  PubMed  CAS  Google Scholar 

  • Brohee S, Janky R, Abdel-Sater F, Vanderstocken G, Andre B, van Helden J (2011) Unraveling networks of co-regulated genes on the sole basis of genome sequences. Nucleic Acids Res 39:6340–6358

    Article  PubMed  CAS  Google Scholar 

  • Corcoran DL, Feingold E, Benos PV (2005) FOOTER: a web tool for finding mammalian DNA regulatory regions using phylogenetic footprinting. Nucleic Acids Res 33:W442–W446

    Article  PubMed  CAS  Google Scholar 

  • Fang F, Blanchette M (2006) FootPrinter3: phylogenetic footprinting in partially alignable sequences. Nucleic Acids Res 34:W617–W620

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez AD, Espinosa V, Vasconcelos AT, Perez-Rueda E, Collado-Vides J (2005) TRACTOR_DB: a database of regulatory networks in gamma-proteobacterial genomes. Nucleic Acids Res 33:D98–D102

    Article  PubMed  CAS  Google Scholar 

  • Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018

    Article  PubMed  CAS  Google Scholar 

  • Grote A, Klein J, Retter I, Haddad I, Behling S, Bunk B, Biegler I, Yarmolinetz S, Jahn D, Munch R (2009) PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res 37:D61–D65

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Sharma PC (2011) Is spatial occurrence of microsatellites in the genome a determinant of their function and dynamics contributing to genome evolution? Curr Sci 100:859–869

    CAS  Google Scholar 

  • Hu J, Li B, Kihara D (2005) Limitations and potentials of current motif discovery algorithms. Nucleic Acids Res 33:4899–4913

    Article  PubMed  CAS  Google Scholar 

  • Huerta AM, Salgado H, Thieffry D, Collado-Vides J (1998) RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res 26:55–59

    Article  PubMed  CAS  Google Scholar 

  • Hughes JD, Estep PW, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Jacques PE, Gervais AL, Cantin M, Lucier JF, Dallaire G, Drouin G, Gaudreau L, Goulet J, Brzezinski R (2005) MtbRegList, a database dedicated to the analysis of transcriptional regulation in Mycobacterium tuberculosis. Bioinformatics 21:2563–2565

    Article  PubMed  CAS  Google Scholar 

  • Janky R, van Helden J (2008) Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution. BMC Bioinformatics 9:37

    Article  Google Scholar 

  • Katti MV, Sakharkar MK, Ranjekar PK, Gupta VS (2000) TRES: comparative promoter sequence analysis. Bioinformatics 16:739–740

    Article  PubMed  CAS  Google Scholar 

  • Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV, Arkin A, Mironov AA, Gelfand MS, Dubchak I (2007) RegTransBase—a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Res 35:D407–D412

    Article  PubMed  CAS  Google Scholar 

  • Kiełbasa SM, Klein H, Roider HG, Vingron M, Bluthgen N (2010) TransFind—predicting transcriptional regulators for gene sets. Nucleic Acids Res 38:W275–W280

    Article  PubMed  Google Scholar 

  • Li G, Liu B, Ma Q, Xu Y (2011) A new framework for identifying cis-regulatory motifs in prokaryotes. Nucleic Acids Res 39:e42

    Article  PubMed  CAS  Google Scholar 

  • Li G, Liu B, Xu Y (2010) Accurate recognition of cis-regulatory motifs with the correct lengths in prokaryotic genomes. Nucleic Acids Res 38:e12

    Article  PubMed  Google Scholar 

  • Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 127–138

  • Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat Biotechnol 8:835–839

    Google Scholar 

  • MacIsaac K, Fraenkel E (2006) Practical strategies for discovering regulatory DNA sequence motifs. PloS Comput Biol 2:201–210

    Article  Google Scholar 

  • McCue L, Thompson W, Carmack C, Ryan MP, Liu JS, Derbyshire V, Lawrence CE (2001) Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. Nucleic Acids Res 29:774–782

    Article  PubMed  CAS  Google Scholar 

  • McGuire AM, Church GM (2000) Predicting regulons and their cis-regulatory motifs by comparative genomics. Nucleic Acids Res 28:4523–4530

    Article  CAS  Google Scholar 

  • McGuire AM, Hughes JD, Church GM (2000) Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. Genome Res 10:744–757

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Koonin EV, Roytberg MA, Gelfand MS (1999) Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Nucleic Acids Res 27:2981–2989

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Morgenstern B, Frech K, Dress A, Werner T (1998) DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics 14(3):290–4

    Google Scholar 

  • Mwangi MM, Siggia ED (2003) Genome wide identification of regulatory motifs in Bacillus subtilis. BMC Bioinformatics 4:18

    Article  PubMed  Google Scholar 

  • Neph S, Tompa M (2006) MicroFootPrinter: a tool for phylogenetic footprinting in prokaryotic genomes. Nucleic Acids Res 34:W366–W368

    Article  PubMed  CAS  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402

    Article  PubMed  Google Scholar 

  • Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA (2010) RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. Nucleic Acids Res 38:D111–D118

    Article  PubMed  CAS  Google Scholar 

  • Qin ZS, McCue LA, Thompson W, Mayerhofer L, Lawrence CE, Liu JS (2003) Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Nat Biotechnol 21:435–439

    Article  PubMed  CAS  Google Scholar 

  • Rouault H, Mazouni K, Couturier L, Hakim V, Schweisguth F (2010) Genome-wide identification of cis-regulatory motifs and modules underlying gene coregulation using statistics and phylogeny. Proc Natl Acad Sci USA 107:14615–14620

    Article  PubMed  CAS  Google Scholar 

  • Satija R, Novak A, Miklos I, Lyngso R, Hein J (2009) BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC. BMC Evol Biol 9:217

    Article  PubMed  Google Scholar 

  • Siddharthan R, Siggia ED, van Nimwegen E (2005) PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLoS Comput Biol 1:e67

    Article  PubMed  Google Scholar 

  • Sierro N, Makita Y, de Hoon M, Nakai K (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36:D93–D96

    PubMed  CAS  Google Scholar 

  • Sosinsky A, Honig B, Mann RS, Califano A (2007) Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting. Proc Natl Acad Sci USA 104:6305–6310

    Article  PubMed  CAS  Google Scholar 

  • Stojanovic N, Florea L, Riemer C, Gumucio D, Slightom J, Goodman M, Miller W, Hardison R (1999) Comparison of five methods for finding conserved sequences in multiple alignments of gene regulatory regions. Nucleic Acids Res 27:3899–3910

    Article  PubMed  CAS  Google Scholar 

  • Tagle DA, Koop BF, Goodman M, Slightom JL, Hess DL, Jones RT (1988) Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicaudatus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203:439–455

    Article  PubMed  CAS  Google Scholar 

  • Thijs G, Lescot M, Marchal K, Rombauts S, De Moor B, Rouze P, Moreau Y (2001) A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17:1113–1122

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Régnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z (2005) Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23:137–144

    Article  PubMed  CAS  Google Scholar 

  • van-Nimwegen E, Zavolan M, Rajewsky N, Siggia ED (2002) Probabilistic clustering of sequences: inferring new bacterial regulons by comparative genomics. Proc Natl Acad Sci USA 99:7323–7328

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Methe BA, Lovley DR, Krushkal J (2004) Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae. J Theor Biol 230:133–144

    Article  PubMed  CAS  Google Scholar 

  • Yellaboina S, Seshadri J, Kumar MS, Ranjan A (2004) PredictRegulon: a web server for the prediction of the regulatory protein binding sites and operons in prokaryote genomes. Nucleic Acids Res 32:W318–W320

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Li S, Pham PT, Su Z (2010) Simultaneous prediction of transcription factor binding sites in a group of prokaryotic genomes. BMC Bioinformatics 11:397

    Article  Google Scholar 

  • Zhang S, Xu M, Li S, Su Z (2009) Genome-wide de novo prediction of cis-regulatory binding sites in prokaryotes. Nucleic Acids Res 37:e72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the DBT center for bioinformatics facility at Department of Bioscience and Biotechnology, Banasthali University, Banasthali, India for support.

Disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Katara.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katara, P., Grover, A. & Sharma, V. Phylogenetic footprinting: a boost for microbial regulatory genomics. Protoplasma 249, 901–907 (2012). https://doi.org/10.1007/s00709-011-0351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0351-9

Keywords

Navigation