Skip to main content
Log in

Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An improved three-node triangular plate finite element is presented for plate analysis. The key idea is to enhance the performance of the original MITC3 element with an edge-based strain smoothing technique. To address this derivation, the MITC3 is explicitly formulated to obtain constant gradient matrices. All strain fields are then averaged over edge-based integration domains defined by two nodes of an element’s edge and the centroid(s) of element(s) sharing the element’s edge. A stabilized coefficient factor is also used for the shearing stiffness. We name this element as ES-MITC3, and it is then employed to analyze various plate problems under static loading and free vibration. Numerical results show that the ES-MITC3 element is free of “shear locking” and performs well for static and vibration behaviors. The present element exhibits a good competitor with other several existing three-node triangular plate elements, even the four-node MITC4 element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  2. Bathe, K.-J.: Finite Element Procedures. Prentice Hall International Inc, Englewood Cliffs (1996)

    MATH  Google Scholar 

  3. Liu, G.R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    Google Scholar 

  4. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements. NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005). doi:10.1016/j.cma.2004.10.008

    Article  MathSciNet  MATH  Google Scholar 

  5. Chau-Dinh, T., Zi, G., Lee, P.-S., Rabczuk, T., Song, J.-H.: Phantom-node method for shell models with arbitrary cracks. Comput. Struct. 92–93, 242–256 (2012). doi:10.1016/j.compstruc.2011.10.021

    Article  Google Scholar 

  6. Areias, P., Rabczuk, T.: Finite strain fracture of plates and shells with configurational forces and edge rotations. Int. J. Numer. Methods Eng. 94, 1099–1122 (2013). doi:10.1002/nme.4477

    Article  MathSciNet  MATH  Google Scholar 

  7. Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.: Phase-field modeling of fracture in linear thin shells. Theor. Appl. Fract. Mech. 69, 102–109 (2014). doi:10.1016/j.tafmec.2013.12.002

    Article  Google Scholar 

  8. Rabczuk, T., Areias, P.M.A., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72, 524–548 (2007). doi:10.1002/nme.2013

    Article  MathSciNet  MATH  Google Scholar 

  9. Rabczuk, T., Areias, P.M.A.: A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. CMES. 1, 11–26 (2000)

    Google Scholar 

  10. Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wüchner, R., Bletzinger, K.U., Bazilevs, Y., Rabczuk, T.: Rotation free isogeometric thin shell analysis using PHT-splines. Comput. Methods Appl. Mech. Eng. 200, 3410–3424 (2011). doi:10.1016/j.cma.2011.08.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen-Thanh, N., Valizadeh, N., Nguyen, M.N., Nguyen-Xuan, H., Zhuang, X., Areias, P., Zi, G., Bazilevs, Y., De Lorenzis, L., Rabczuk, T.: An extended isogeometric thin shell analysis based on Kirchhoff–Love theory. Comput. Methods Appl. Mech. Eng. 284, 265–291 (2015). doi:10.1016/j.cma.2014.08.025

    Article  MathSciNet  Google Scholar 

  12. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N., Rabczuk, T.: Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory. Mech. Adv. Mater. Struct. 22, 451–469 (2015). doi:10.1080/15376494.2013.779050

    Article  Google Scholar 

  13. Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. A/Solids 43, 89–108 (2014). doi:10.1016/j.euromechsol.2013.09.001

    Article  Google Scholar 

  14. Thai, C.H., Kulasegaram, S., Tran, L.V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

    Article  Google Scholar 

  15. Yin, S., Hale, J.S., Yu, T., Bui, T.Q., Bordas, S.P.A.: Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos. Struct. 118, 121–138 (2014). doi:10.1016/j.compstruct.2014.07.028

    Article  Google Scholar 

  16. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q., Bordas, S.P.A.: NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos. Struct. 99, 309–326 (2013). doi:10.1016/j.compstruct.2012.11.008

    Article  Google Scholar 

  17. Batoz, J.-L., Bathe, K-JÜr, Ho, L.-W.: A study of three-node triangular plate bending elements. Int. J. Numer. Methods Eng. 15, 1771–1812 (1980). doi:10.1002/nme.1620151205

    Article  MATH  Google Scholar 

  18. Zhuang, X.Y., Huang, R.Q., Zhu, H.H., Askes, H., Mathisen, K.: A new and simple locking-free triangular thick plate element using independent shear degrees of freedom. Finite Elem. Anal. Des. 75, 1–7 (2013). doi:10.1016/j.finel.2013.06.005

    Article  MATH  Google Scholar 

  19. Macneal, R.H.: Derivation of element stiffness matrices by assumed strain distributions. Nuclear Eng. Des. 70, 3–12 (1982). doi:10.1016/0029-5493(82)90262-X

    Article  Google Scholar 

  20. Tessler, A., Hughes, T.J.R.: A three-node Mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Eng. 50, 71–101 (1985). doi:10.1016/0045-7825(85)90114-8

    Article  MATH  Google Scholar 

  21. Kim, J.H., Kim, Y.H.: Three-node macro triangular shell element based on the assumed natural strains. Comput. Mech. 29, 441–458 (2002). doi:10.1007/s00466-002-0354-7

    Article  MATH  Google Scholar 

  22. Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Methods Eng. 36, 1311–1337 (1993). doi:10.1002/nme.1620360805

    Article  MATH  Google Scholar 

  23. Bletzinger, K.-U., Bischoff, M., Ramm, E.: A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput. Struct. 75, 321–334 (2000). doi:10.1016/S0045-7949(99)00140-6

    Article  Google Scholar 

  24. Lee, P.-S., Bathe, K.-J.: Development of MITC isotropic triangular shell finite elements. Comput. Struct. 82, 945–962 (2004). doi:10.1016/j.compstruc.2004.02.004

    Article  Google Scholar 

  25. Lee, Y., Yoon, K., Lee, P.-S.: Improving the MITC3 shell finite element by using the Hellinger–Reissner principle. Comput. Struct. 110–111, 93–106 (2012). doi:10.1016/j.compstruc.2012.07.004

    Article  Google Scholar 

  26. Lee, Y., Lee, P.-S., Bathe, K.-J.: The MITC3\(+\) shell element and its performance. Comput. Struct. 138, 12–23 (2014). doi:10.1016/j.compstruc.2014.02.005

    Article  Google Scholar 

  27. Jeon, H.-M., Lee, P.-S., Bathe, K.-J.: The MITC3 shell finite element enriched by interpolation covers. Comput. Struct. 134, 128–142 (2014). doi:10.1016/j.compstruc.2013.12.003

    Article  Google Scholar 

  28. Liu, G.R., Nguyen-Thoi, T.: Smoothed Finite Element Methods. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  29. Chen, J.-S., Wu, C.-T., Yoon, S., You, Y.: A stabilized conforming nodal integration for Galerkin mesh-free methods. Int. J. Numer. Methods Eng. 50, 435–466 (2001). doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A

  30. Cui, X.Y., Liu, G.R., Li, G.Y., Zhang, G.Y., Sun, G.Y.: Analysis of elastic–plastic problems using edge-based smoothed finite element method. Int. J. Press. Vessels Pip. 86, 711–718 (2009). doi:10.1016/j.ijpvp.2008.12.004

    Article  Google Scholar 

  31. Liu, G.R., Nguyen-Thoi, T., Lam, K.Y.: An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J. Sound Vib. 320, 1100–1130 (2009). doi:10.1016/j.jsv.2008.08.027

    Article  Google Scholar 

  32. Nguyen-Xuan, H., Liu, G.R.: An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems. Comput. Struct. 128, 14–30 (2013). doi:10.1016/j.compstruc.2013.05.009

    Article  Google Scholar 

  33. Nguyen-Thoi, T., Phung-Van, P., Luong-Van, H., Nguyen-Van, H., Nguyen-Xuan, H.: A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Comput Mech. 51, 65–81 (2012). doi:10.1007/s00466-012-0705-y

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., Thai-Hoang, C.: A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 91, 705–741 (2012). doi:10.1002/nme.4289

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., Nguyen-Xuan, H.: A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. Int. J. Mech. Sci. 74, 32–45 (2013). doi:10.1016/j.ijmecsci.2013.04.005

    Article  Google Scholar 

  36. Nguyen-Xuan, H., Liu, G.R., Thai-Hoang, C., Nguyen-Thoi, T.: An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. 199, 471–489 (2010). doi:10.1016/j.cma.2009.09.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Cui, X., Liu, G.-R., Li, G., Zhang, G., Zheng, G.: Analysis of plates and shells using an edge-based smoothed finite element method. Comput. Mech. 45, 141–156 (2009). doi:10.1007/s00466-009-0429-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen-Xuan, H., Rabczuk, T., Nguyen-Thanh, N., Nguyen-Thoi, T., Bordas, S.: A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput. Mech. 46, 679–701 (2010). doi:10.1007/s00466-010-0509-x

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T., Nguyen-Thoi, T.: Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy. Compos. Struct. 112, 327–338 (2014). doi:10.1016/j.compstruct.2014.02.024

    Article  Google Scholar 

  40. Nguyen-Van, H., Nguyen-Hoai, N., Chau-Dinh, T., Tran-Cong, T.: Large deflection analysis of plates and cylindrical shells by an efficient four-node flat element with mesh distortions. Acta Mech. 226, 2693–2713 (2015). doi:10.1007/s00707-015-1339-x

    Article  MathSciNet  MATH  Google Scholar 

  41. Bordas, S.P.A., Rabczuk, T., Hung, N.-X., Nguyen, V.P., Natarajan, S., Bog, T., Quan, D.M., Hiep, N.V.: Strain smoothing in FEM and XFEM. Comput. Struct. 88, 1419–1443 (2010). doi:10.1016/j.compstruc.2008.07.006

    Article  Google Scholar 

  42. Natarajan, S., Ferreira, A.J.M., Bordas, S., Carrera, E., Cinefra, M., Zenkour, A.M.: Analysis of functionally graded material plates using triangular elements with cell-based smoothed discrete shear gap method. Math. Probl. Eng. (2014). doi:10.1155/2014/247932

    MathSciNet  Google Scholar 

  43. Nguyen-Xuan, H., Rabczuk, T., Bordas, S., Debongnie, J.F.: A smoothed finite element method for plate analysis. Comput. Methods Appl. Mech. Eng. 197, 1184–1203 (2008). doi:10.1016/j.cma.2007.10.008

    Article  MATH  Google Scholar 

  44. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.P.A.: A smoothed finite element method for shell analysis. Comput. Methods Appl. Mech. Eng. 198, 165–177 (2008). doi:10.1016/j.cma.2008.05.029

    Article  MATH  Google Scholar 

  45. Bathe, K.-J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985). doi:10.1002/nme.1620210213

    Article  MATH  Google Scholar 

  46. Nguyen-Thanh, N., Rabczuk, T., Nguyen-Xuan, H., Bordas, S.: An alternative alpha finite element method with discrete shear gap technique for analysis of isotropic Mindlin–Reissner plates. Finite Elem. Anal. Des. 47, 519–535 (2011). doi:10.1016/j.finel.2011.01.004

    Article  Google Scholar 

  47. Lyly, M., Stenberg, R., Vihinen, T.: A stable bilinear element for the Reissner–Mindlin plate model. Comput. Methods Appl. Mech. Eng. 110, 343–357 (1993). doi:10.1016/0045-7825(93)90214-I

    Article  MathSciNet  MATH  Google Scholar 

  48. Ayad, R., Dhatt, G., Batoz, J.L.: A new hybrid-mixed variational approach for Reissner–Mindlin plates. The MiSP model. Int. J. Numer. Methods Eng. 42, 1149–1179 (1998). doi:10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2

  49. Razzaque, A.: Program for triangular bending elements with derivative smoothing. Int. J. Numer. Methods Eng. 6, 333–343 (1973). doi:10.1002/nme.1620060305

    Article  Google Scholar 

  50. Morley, L.S.D.: Skew Plates and Structures. Pergamon Press, Oxford (1963)

    MATH  Google Scholar 

  51. Abbassian, F., Dawswell, D.J., Knowles, N.C.: Free Vibration Benchmarks. Atkins Engineering Sciences, Glasgow (1987)

    Google Scholar 

  52. Irie, T., Yamada, G., Aomura, S.: Natural frequencies of Mindlin circular plates. J. Appl. Mech. 47, 652–655 (1980). doi:10.1115/1.3153748

    Article  MATH  Google Scholar 

  53. Al-Bermani, F.G.A., Liew, K.M.: Natural frequencies of thick arbitrary quadrilateral plates using the pb-2 Ritz method. J. Sound Vib. 196, 371–385 (1996). doi:10.1006/jsvi.1996.0489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thanh Chau-Dinh or Hung Nguyen-Xuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau-Dinh, T., Nguyen-Duy, Q. & Nguyen-Xuan, H. Improvement on MITC3 plate finite element using edge-based strain smoothing enhancement for plate analysis. Acta Mech 228, 2141–2163 (2017). https://doi.org/10.1007/s00707-017-1818-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1818-3

Navigation