Skip to main content
Log in

Effect of velocity slip on settling of assemblages of spherical particles in power-law liquids at low to moderate Reynolds numbers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Combined effects of the velocity slip, volume fraction of spherical particles and power-law behavior index on the flow and drag phenomena of assemblages of spherical particles in power-law liquids with velocity slip at the interface are numerically investigated. The effects of varying degrees of the velocity slip at interfaces of the fluid–solid particles are incorporated in the solver by making use of a linear slip velocity model. Further, the assemblages of particles are mathematically simplified as clusters of mono-size spherical particles equidistant from each other and the effect of neighboring particles on the target particle nullified at midpoint between the centers of two neighboring spherical particles. Within the combination of these two models, the dimensionless governing conservation equations of mass and momentum for power-law fluids are solved using a simplified marker and cell method in spherical coordinates on a staggered grid arrangement. The convective and non-Newtonian terms of the momentum equation are discretized using quadratic upstream interpolation for convective kinematics scheme and a second-order central differencing scheme, respectively. The presented numerical solver is extensively tested for its reliability via routes of the grid independence and validation with the existing literature counterparts. Furthermore, extensive new results were obtained in the range of dimensionless parameters such as the holdup of spheres, \(\Phi = 0.1{-}0.5\); dimensionless slip number, \(\lambda = 0.01{-}100\); Reynolds number, \(Re = 0.1{-}200\); and power-law behavior index, \(n = 0.6{-}1.6\). Briefly, some results indicate that the drag coefficients of assemblages of spheres decrease with the decreasing slip number and/or decreasing power-law index and/or with the decreasing holdup of the spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(C_\mathrm{{d}}\) :

Total drag coefficient, dimensionless

\(C_\mathrm{{df}}\) :

Friction drag coefficient, dimensionless

\(C_\mathrm{{dp}}\) :

Pressure drag coefficient, dimensionless

\(F_\mathrm{{D}}\) :

Drag force (N)

m :

Power-law fluid consistency index (Pa \(\hbox {s}^{n}\))

n :

Power-law fluid behavior index, dimensionless

p :

Pressure, dimensionless

r :

Radial distance, dimensionless

R :

Sphere radius (m)

Re :

Reynolds number, dimensionless

\(R_{\infty }\) :

Outer cell radius, dimensionless

\(U_{o}\) :

Freestream velocity (m/s)

\(v_{r}\) :

r-Component of velocity, dimensionless

\(v_{\theta }\) :

\(\theta \)-Component of velocity, dimensionless

\(\beta \) :

Slip coefficient (Pa s/m)

\(\varepsilon \) :

Rate of strain tensor (\(\hbox {s}^{-1})\)

\(\Phi \) :

Volume fraction of spheres in assemblage, dimensionless

\(\theta \) :

Streamwise direction, degree

\(\Pi _{\varepsilon }\) :

Second invariant of the rate of strain tensor, dimensionless

\(\eta \) :

Fluid viscosity, dimensionless

\(\eta _\mathrm{{app}}\) :

Apparent viscosity of fluid (Pa s)

\(\rho \) :

Density of fluid (kg/\(\hbox {m}^{3}\))

\(\Psi \) :

Stream function, dimensionless

\(\omega \) :

Vorticity, dimensionless

\(\tau \) :

Extra stress (Pa)

References

  1. Meijer, H.E.H., Verbraak, C.P.J.M.: Modeling of extrusion with slip boundary conditions. Polym. Eng. Sci. 28, 758–772 (1988)

    Article  Google Scholar 

  2. Vinogradov, G.V., Malkin, A.Y., Yanovskil, Y.G., Borisenkova, E.K., Yarlykov, B.V., Berezhnaya, G.V.: Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes. J. Polym. Sci. A 10, 1061–1084 (1972)

    Article  Google Scholar 

  3. Kalika, D., Denn, M.M.: Wall slip and extrudate distortion in linear low-density polyethylene. J. Rheol. 31, 815–834 (1987)

    Article  Google Scholar 

  4. Kalyon, D.M., Gevgilili, H.: Wall slip and extrudate distortion of three polymer melts. J. Rheol. 47, 683–699 (2003)

    Article  Google Scholar 

  5. Mennig, G.: Visual observations of slip in flow of polymer melts. J. Macromol. Sci. 14, 231–240 (1977)

    Article  Google Scholar 

  6. den Otter, J.L.: Rheological measurements on two uncrosslinked, unfilled synthetic rubbers. Rheol. Acta 14, 329–336 (1975)

    Article  Google Scholar 

  7. Jiang, T.Q., Young, A.C., Metzner, A.B.: The rheological characterization of HPG gels: measurement of slip velocities in capillary tubes. Rheol. Acta 25, 397–404 (1986)

    Article  Google Scholar 

  8. Yilmazer, U., Kalyon, D.M.: Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J. Rheol. 33, 1197–1212 (1989)

    Article  Google Scholar 

  9. Piau, J.M.: Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges: meso-and macroscopic properties, constitutive equations and scaling laws. J. Non-Newton. Fluid Mech. 144, 1–29 (2007)

    Article  Google Scholar 

  10. Lindner, A., Coussot, P., Bonn, D.: Viscous fingering in a yield stress fluid. Phys. Rev. Lett. 85, 314–317 (2000)

    Article  Google Scholar 

  11. Marze, S., Langevin, D., Saint-Jalmes, A.: Aqueous foam slip and other regimes determined by rheometry and multiple light scattering. J. Rheol. 52, 1091–1111 (2008)

    Article  Google Scholar 

  12. Ballesta, P., Petekidis, G., Isa, L., Poon, W.C.K., Besseling, R.: Wall slip and flow of concentrated hard-sphere colloidal suspensions. J. Rheol. 56, 1005–1037 (2012)

    Article  Google Scholar 

  13. Denn, M.M.: Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 22, 265–287 (2001)

    Article  MATH  Google Scholar 

  14. Damianou, Y., Georgiou, G.C., Moulitsas, I.: Combined effects of compressibility and slip in flows of a Herschel–Bulkley fluid. J. Non-Newton. Fluid Mech. 193, 89–102 (2013)

    Article  Google Scholar 

  15. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in Newtonian liquid: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)

    Article  Google Scholar 

  16. Sochi, T.: Slip at fluid-solid interface. Poly. Rev. 51, 309–340 (2011)

    Article  Google Scholar 

  17. Barnes, H.A.: A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J. Non-Newton. Fluid Mech. 56, 221–251 (1995)

    Article  Google Scholar 

  18. Tonini, R.D.: Fluidization with non-Newtonian fluids. Encyclop. Fluid Mech. 6, 495–522 (1987)

    Google Scholar 

  19. Lareo, C., Fryer, P.J., Barigou, M.: The fluid-mechanics of two-phase solid-liquid food flows: a review. T. I. Chem. Eng. Lond. 75C(1997), 73–105 (1997)

    Google Scholar 

  20. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)

    Google Scholar 

  21. Soo, S.L.: Multiphase Fluid Dynamics. Science Press, Beijing (1999)

    Google Scholar 

  22. Michaelides, E.E.: Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer. World Scientific, Singapore (2006)

    Book  Google Scholar 

  23. Chhabra, R.P.: Bubbles, Drops and Particles in Non-Newtonian Fluids. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  24. Navier, C.L.M.H.: Sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr. 6, 389–440 (1827)

    Google Scholar 

  25. Hill, D.A., Hasegawa, T., Denn, M.M.: On the apparent relation between the adhesive failure and melt fracture. J. Rheol. 34, 891–918 (1990)

    Article  Google Scholar 

  26. Hatzikiriakos, S.G., Dealy, J.M.: Wall slip of molten high density polyethylene: II. Capillary rheometer studies. J. Rheol. 36, 703–741 (1992)

    Article  Google Scholar 

  27. Hatzikiriakos, S.G., Dealy, J.M.: Wall slip of molten high density polyethylene: I. Sliding plate rheometer studies. J. Rheol. 35, 497–523 (1991)

    Article  Google Scholar 

  28. Tang, H.S., Kalyon, D.M.: Unsteady circular tube flow of compressible polymeric liquids subject to pressure-dependent wall slip. J. Rheol. 52, 507–525 (2008)

    Article  Google Scholar 

  29. Basset, B.: A Treatise on Hydrodynamics. Cambridge University Press, Cambridge (1888)

    MATH  Google Scholar 

  30. Hocking, L.M.: The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J. Eng. Math. 7, 207–221 (1973)

    Article  MATH  Google Scholar 

  31. Davis, M.J., Kezirian, M.T., Brenner, H.: On the Stokes–Einstein model of surface diffusion along solid surfaces: slip boundary conditions. J. Colloid Interface Sci. 165, 129–140 (1994)

    Article  Google Scholar 

  32. Keh, H.J., Shiau, S.C.: Effects of inertia on the slow motion of aerosol particles. Chem. Eng. Sci. 55, 4415–4421 (2000)

    Article  Google Scholar 

  33. Lee, T.C., Keh, H.J.: Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int. J. Eng. Sci. 69, 1–15 (2013)

    Article  MathSciNet  Google Scholar 

  34. Willmott, G.: Dynamics of a sphere with inhomogeneous slip boundary conditions in Stokes flow. Phy. Rev. E 77, 1–4 (2008)

    Article  Google Scholar 

  35. Padmavathi, B.S., Amaranath, T., Nigam, S.D.: Stokes flow past a sphere with mixed slip-stick boundary conditions. Fluid Dyn. Res. 11, 229–234 (1993)

    Article  MATH  Google Scholar 

  36. Wen, S.B., Lai, C.L.: Theoretical analysis of flow passing single sphere moving in a micro-tube. Proc. R. Soc. Lond. A 459, 495–526 (2003)

    Article  MATH  Google Scholar 

  37. Luo, H., Pozrikidis, C.: Effect of surface slip on Stokes flow past a spherical particle in infinite fluid and near a plane wall. J. Eng. Math. 62, 1–21 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Atefi, G.H., Niazmand, H., Meigounpoory, M.R.: Numerical analysis of 3-D flow past a stationary sphere with slip condition at low and moderate Reynolds numbers. J. Dispers. Sci. Technol. 28, 591–602 (2007)

    Article  Google Scholar 

  39. Meigounpoory, M.R., Atefi, G.H., Niazmand, H., Mirbozorgi, A.: Numerical investigation of slip effects on three-dimensional flow past an impenetrable rotating spherical nano particle. J. Dispers. Sci. Technol. 28, 991–1003 (2007)

    Article  Google Scholar 

  40. Kostrzewa, M., Delgado, A., Wierschem, A.: Particle settling in micellar solutions of varying concentration and salt content. Acta Mech. 227, 677–692 (2016)

    Article  Google Scholar 

  41. Faltas, M.S., Saad, E.I.: Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Methods Appl. Sci. 34, 1594–1605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kishore, N., Ramteke, R.R.: Slip in flows of power-law liquids past smooth spherical particles. Acta Mech. 226, 2555–2571 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kishore, N., Ramteke, R.R.: Slip in flow through assemblages of spherical particles at low to moderate Reynolds numbers. Chem. Eng. Technol. 39, 1087–1098 (2016)

    Article  Google Scholar 

  44. Ramteke, R.R., Kishore, N.: Heat transfer phenomena of assemblages of smooth slip spheres in Newtonian fluids, Heat Transfer Asian Res. (2015). doi:10.1002/htj.21204

  45. Ramteke, R.R., Kishore, N.: Heat transfer from slip spheres to a shear-thickening fluid: effects of slip velocity and particle volume fraction. Proc. Eng. 127, 354–361 (2015)

    Article  Google Scholar 

  46. Kishore, N., Ramteke, R.R.: Forced convective heat transfer from spheres to Newtonian fluids in steady axisymmetric flow regime with velocity slip at fluid-solid interface. Int. J. Thermal Sci. 105, 206–217 (2016)

    Article  Google Scholar 

  47. Leonard, B.P.: A stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

  48. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surfaces. Phys. Fluids 8, 2182–2188 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanda Kishore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramteke, R.R., Kishore, N. Effect of velocity slip on settling of assemblages of spherical particles in power-law liquids at low to moderate Reynolds numbers. Acta Mech 228, 1871–1889 (2017). https://doi.org/10.1007/s00707-017-1806-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1806-7

Navigation