Skip to main content
Log in

On the characterization of porosity-related parameters in micro-dilatation theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Although micro-dilatation theory is very suitable and effective in modeling elastic porous materials, the absence of any guidance to evaluate or characterize its porosity-related parameters in the literature limited its use and applicability. This paper is proposing a methodology to characterize two of such important parameters, namely porosity change stress parameter and void stiffness coefficient, in terms of microstructural details such as average void radius and density of voids. Two numerical experiments were used to characterize these parameters, and results were validated by a comparison with a high-resolution finite element model of the microstructure with voids explicitly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  2. Scalia, A., Sumbatyan, M.A.: Contact problem for porous elastic half-plane. J. Elast. 60, 91–102 (2000)

    Article  MATH  Google Scholar 

  3. Scalia, A.: Contact problem for porous elastic strip. Int. J. Eng. Sci. 40, 401–410 (2002)

    Article  MATH  Google Scholar 

  4. Atkin, R.J., Cowin, S.C., Fox, N.: On boundary conditions for polar materials. ZAMP 28, 1017–1026 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekharaiah, D.S.: Effects of surface stresses and voids on Rayleigh waves in an elastic solid. Int. J. Eng. Sci. 25, 205–211 (1987)

    Article  MATH  Google Scholar 

  6. Ciarletta, M., Iovane, G., Sumbatyan, M.A.: On stress analysis for cracks in elastic materials with voids. Int. J. Eng. Sci. 41, 2447–2461 (2003)

    Article  MATH  Google Scholar 

  7. Ramézani, H., Steeb, H., Jeong, J.: Analytical and numerical studies on Penalized Micro-Dilatation (PMD) theory: macro-micro link concept. Eur. J. Mech. A/Solids 34, 130–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bishay, P.L., Sladek, V., Gao, X.W., Sladek, J.: Analysis of elastic media with voids using new mixed-collocation finite element method (MCFEM). J. Eng. Mech. (2016). doi:10.1061/(ASCE)EM.1943-7889.0001193

    Google Scholar 

  9. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    Book  MATH  Google Scholar 

  10. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iesan, D., Quintanilla, R.: Existence and continuous dependence results in the theory of microstretch elastic bodies. Int. J. Eng. Sci. 32, 991–1001 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iesan, D., Pompei, A.: On the equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iesan, D., Nappa, L.: Extremum principles and existence results in micromorphic elasticity. Int. J. Eng. Sci. 39, 2051–2070 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. A. Hermann, Paris (1909)

    MATH  Google Scholar 

  15. Rosenberg, J., Cimrman, R.: Microcontinuum approach in biomechanical modeling. Math. Comput. Simul. 61, 249–260 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Walsh, S.D.C., Tordesillas, A.: Finite element methods for micropolar models of granular materials. Appl. Math. Model. 30, 1043–1055 (2006)

    Article  MATH  Google Scholar 

  17. Forest, S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. ASCE 135, 117–131 (2009)

    Article  Google Scholar 

  18. Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elastoplasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  19. Isaksson, P.: A note on stress fields and crack growth in porous materials subjected to a contact load. Int. J. Solids Struct. 64–65, 62–70 (2015)

    Article  Google Scholar 

  20. Iovane, G., Nasedkin, A.V.: Finite element analysis of static problems for elastic media with voids. Comput. Struct. 84, 19–24 (2005)

    Article  Google Scholar 

  21. Thurieau, N., Njiwa, R.K., Taghite, M.: The local point interpolation-boundary element method (LPI-BEM) applied to the solution of mechanical 3D problem of a micro-dilatation medium. Eur. J. Mech. A/Solids 47, 391–399 (2014)

    Article  Google Scholar 

  22. Sladek, J., Sladek, V., Repka, M., Bishay, P.L.: Static and dynamic behavior of porous elastic materials based on micro-dilatation theory: a numerical study using the MLPG method. Int. J. Solids Struct. 96, 126–135 (2016)

    Article  Google Scholar 

  23. Jenkins, J.T.: Static equilibrium of granular materials. J. Appl. Mech. 42, 603–606 (1975)

    Article  Google Scholar 

  24. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Bishay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishay, P.L., Repka, M., Sladek, V. et al. On the characterization of porosity-related parameters in micro-dilatation theory. Acta Mech 228, 1631–1644 (2017). https://doi.org/10.1007/s00707-016-1789-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1789-9

Navigation