Skip to main content
Log in

Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, surface and thermal effects on the vibration characteristics of viscoelastic functionally graded (FG) nanobeams embedded in a viscoelastic foundation are investigated based on nonlocal strain gradient elasticity theory and Euler–Bernoulli beam model. The present model contains two parameters to capture the size effects in which the stress is considered for not only the nonlocal stress field but also the strain gradients stress field. Gurtin–Murdoch elasticity theory is incorporated into the nonlocal strain gradient theory to develop a nonclassical beam model including the surface effects. The viscoelastic foundation consists of a Winkler–Pasternak layer together with a viscous layer of infinite parallel dashpots. A power-law model is adopted to describe a continuous variation of material properties of the FG nanobeam. The governing equations of nonlocal viscoelastic FG nanobeams are obtained using Hamilton’s principle and solved implementing an analytical solution for simply supported and clamped–clamped boundary conditions. The results are validated with those available in the literature. The effects of linear, shear and viscous layers of foundation, structural damping coefficient, surface elasticity, nonlocal parameter, length scale parameter, temperature change, power-law exponent, and slenderness ratio on the frequencies of viscoelastic FG nanobeams are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

  2. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  3. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  4. Li, L., Hu, Y., Ling, L.: Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos. Struct. 133, 1079–1092 (2015)

    Article  Google Scholar 

  5. Ebrahimi, F., Barati, M.R., Dabbagh, A.: A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int. J. Eng. Sci. 107, 169–182 (2016)

    Article  Google Scholar 

  6. Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 41, 1651–1655 (2009)

    Article  Google Scholar 

  7. Beni, Y.T.: Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech. Res. Commun. 75, 67–80 (2016)

    Article  Google Scholar 

  8. Thai, H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ebrahimi, F., Nasirzadeh, P.: A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method. J. Theor. Appl. Mech. 53, 1041–1052 (2015)

    Article  Google Scholar 

  10. Barati, M.R., Zenkour, A.M., Shahverdi, H.: Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Compos. Struct. 141, 203–212 (2016)

    Article  Google Scholar 

  11. Ebrahimi, F., Barati, M.R.: An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams. Adv. Nano Res. 4, 65–84 (2016)

    Article  Google Scholar 

  12. Ebrahimi, F., Barati, M.R.: Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J. Braz. Soc. Mech. Sci. Eng. 1–16 (2016). doi:10.1007/s40430-016-0551-5

  13. Ebrahimi, F., Barati, M.R.: Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment. Int. J. Smart Nano Mater. 1–22 (2016)

  14. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218, 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Eltaher, M.A., Emam, S.A., Mahmoud, F.F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  16. Şimşek, M., Yurtcu, H.H.: Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  17. Ebrahimi, F., Barati, M.R.: Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur. Phys. J. Plus 131, 279 (2016)

    Article  Google Scholar 

  18. Ebrahimi, F., Barati, M.R.: A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arab. J. Sci. Eng. 41, 1679–1690 (2016)

    Article  MathSciNet  Google Scholar 

  19. Zeighampour, H., Beni, Y.T.: Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl. Math. Model. 39, 5354–5369 (2015)

    Article  MathSciNet  Google Scholar 

  20. Shojaeian, M., Beni, Y.T.: Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens. Actuators A: Phys. 232, 49–62 (2015)

    Article  Google Scholar 

  21. Shojaeian, M., Beni, Y.T., Ataei, H.: Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut. 118, 62–71 (2016)

    Article  Google Scholar 

  22. Hosseini-Hashemi, S., Nahas, I., Fakher, M., Nazemnezhad, R.: Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Beni, Y.T.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27, 2199–2215 (2016)

    Article  Google Scholar 

  24. Mehralian, F., Beni, Y.T.: Size-dependent torsional buckling analysis of functionally graded cylindrical shell. Compos. Part B: Eng. 94, 11–25 (2016)

    Article  Google Scholar 

  25. Mehralian, F., Beni, Y.T., Ansari, R.: Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 152, 45–61 (2016)

    Article  Google Scholar 

  26. Ebrahimi, F., Barati, M.R.: Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122, 1–18 (2016)

    Google Scholar 

  27. Ebrahimi, F., Barati, M.R.: Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams. Eur. Phys. J. Plus 131, 1–14 (2016)

    Article  Google Scholar 

  28. Ebrahimi, F., Barati, M.R.: Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J. Vib. Control (2016). doi:10.1177/1077546316646239

    Google Scholar 

  29. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  30. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, L., Hu, Y.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  Google Scholar 

  32. Li, L., Li, X., Hu, Y.: Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 102, 77–92 (2016)

    Article  Google Scholar 

  33. Ebrahimi, F., Barati, M.R.: Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl. Phys. A 122, 843 (2016)

    Article  Google Scholar 

  34. Li, L., Hu, Y., Li, X.: Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 115, 135–144 (2016)

    Article  Google Scholar 

  35. Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  36. Pouresmaeeli, S., Ghavanloo, E., Fazelzadeh, S.A.: Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013)

    Article  Google Scholar 

  37. Hashemi, S.H., Mehrabani, H., Ahmadi-Savadkoohi, A.: Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium. Compos. Part B: Eng. 78, 377–383 (2015)

    Article  Google Scholar 

  38. Hosseini, M., Jamalpoor, A.: Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials. J. Therm. Stresses 38, 1428–1456 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Barati, M.R. Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mech 228, 1197–1210 (2017). https://doi.org/10.1007/s00707-016-1755-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1755-6

Navigation