Skip to main content
Log in

Coupled Rayleigh waves in a 2-mm piezoelectric layer over a porous piezo-thermoelastic half-space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Propagation of coupled Rayleigh-type waves in a 2-mm piezoelectric layer over a porous piezo-thermoelastic half-space is investigated in this paper. The governing equations for an orthorhombic porous piezo-thermoelastic half-space and 2-mm piezoelectric layer are discussed. The dispersion relations have been numerically derived. The phase velocities of Rayleigh waves are obtained for different types of electric–thermal boundary conditions at the interface and at the free surface. The variations of mechanical displacements, electric potential and temperature component with the non-dimensional wave number are obtained. The effects of different electric–thermal boundary conditions on the phase velocity have also been discussed. The dispersion curves and attenuation coefficients of wave propagation are presented graphically. Some reduced cases are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoummady, M., Campitelli, A., Wlodarski, W.: Acoustic wave sensors: design, sensing mechanisms and applications. Smart Mater. Struct. 6, 647–657 (1997)

    Article  Google Scholar 

  2. Vellekoop, M.J.: Acoustic wave sensors and their technology. Ultrasonics 36, 7–14 (1998)

  3. McMullan, C., Mehta, H., Gizeli, E., Lowe, C.R.: Modelling of the mass sensitivity of the Love wave device in the presence of a viscous liquid. J. Phys. D Appl. Phys. 33, 3053–3059 (2000)

    Article  Google Scholar 

  4. Takeda, H., Sako, H., Shimizu, H., Kodama, K., Nishida, M., Nakao, H., Nishida, T., Okamura, S., Shikida, T., Shiosaki, T.: Growth and characterization of lanthanum calcium oxoborate LaCa\(_4\)O(BO\(_3\))\(_3\) single crystals. Jpn. J. Appl. Phys. 42, 6081–6085 (2003)

    Article  Google Scholar 

  5. Sritharan, K., Strobl, C.J., Schneider, M.F., Wixforth, A., Guttenberg, Z.: Acoustic mixing of low Reylond’s numbers. Appl. Phys. Lett. 88, 054102 (1–3) (2006)

    Article  Google Scholar 

  6. Du, X.Y., Fu, Y.Q., Tan, S.C., Luo, J.K., Flewitt, A.J., Milne, W.I., Lee, D.S., Park, N.M., Park, J., Choi, Y.J., Kim, S.H., Maeng, S.: ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl. Phys. Lett. 93, 094105(1–3) (2008)

    Google Scholar 

  7. Gell, J.R., Ward, M.B., Young, R.J., Stevenson, R.M., Atkinson, P., Anderson, D., Jones, G.A.C., Ritchie, D.A., Shields, A.J.: Modulation of single quantum dot energy levels by a surface-acoustic-wave. Appl. Phys. Lett. 93, 081115(1–3) (2008)

    Article  Google Scholar 

  8. Shilton, R., Tan, M.K., Yeo, L.Y., Friend, J.R.: Particle concentration and mixing in microdrops driven by focused surface acoustic waves. J. Appl. Phys. 104, 014910 (1-9) (2008)

    Article  Google Scholar 

  9. Wu, T.T., Chen, Y.Y.: Analysis of surface acoustic waves in layered piezoelectric media and its applications to the design of SAW devices. Chin. J. Mech. Ser. A 19, 225–232 (2003)

    Google Scholar 

  10. Liu, J., Cao, X.S., Wang, Z.K.: Love waves in a smart functionally graded piezoelectric composite structure. Acta Mech. 208, 63–80 (2009). doi:10.1007/s00707-008-0124-5

    Article  MATH  Google Scholar 

  11. Wang, X., Schiavone, P.: Surface and interfacial waves in anisotropic elastic quasicrystals. Wave Motion 51, 77–85 (2014)

    Article  MathSciNet  Google Scholar 

  12. Rosi, G., Nguyen, V.H., Naili, S.: Surface waves at the interface between an inviscid fluid and a dipolar gradient solid. Wave Motion 53, 51–65 (2015)

    Article  MathSciNet  Google Scholar 

  13. Chirita, S., Ciarletta, M., Tibullo, V.: Rayleigh surface waves on a Kelvin-Voigt viscoelastic half-space. J. Elast. 115, 61–76 (2014). doi:10.1007/s10659-013-9447-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Schmidt, R.V., Voltmer, F.W.: Piezoelectric elastic surface waves in anisotropic layered media. IEEE Trans. Microwave Theory Tech. 17, 920–926 (1969)

    Article  Google Scholar 

  15. Collet, B., Destrade, M.: Explicit secular equations for piezoacoustic surface waves: Rayleigh modes. J. Appl. Phys. 98, 054903 (2005)

    Article  Google Scholar 

  16. Pang, Y., Liu, J.X., Wang, Y.S., Zhao, X.F.: Propagation of Rayleigh-type surface waves in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. J. Appl. Phys. 103, 074901 (2008). doi:10.1063/1.2902501

    Article  Google Scholar 

  17. Rayleigh, L.: On waves propagating along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1885). doi:10.1112/plms/s1-17.1.4

    Article  MathSciNet  MATH  Google Scholar 

  18. Deresiewicz, H.: Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 29, 204–209 (1957)

    Article  MathSciNet  Google Scholar 

  19. Lockett, F.J.: Effect of thermal properties of a solid on the velocity of Rayleigh waves. J. Mech. Phys. Solids 7, 71–75 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chadwick, P., Sneddon, I.N.: Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 6, 223–230 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chadwick, P., Windle, D.W.: Propagation of Rayleigh waves along isothermal and insulated boundaries. Proc. R. Soc. Am. 280, 47–71 (1964). doi:10.1098/rspa.1964.0130

    Article  MathSciNet  MATH  Google Scholar 

  22. Nayfeh, A., Nemat-Nasser, S.D.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)

    Article  MATH  Google Scholar 

  23. Sinha, A.N., Sinha, S.B.: Velocity of Rayleigh waves with thermal relaxation in time. Acta Mech. 23, 159–166 (1975)

    Article  MATH  Google Scholar 

  24. Agarwal, V.K.: On surface waves in generalized thermoelasticity. J. Elast. 8, 171–177 (1978)

    Article  MATH  Google Scholar 

  25. Dawn, N.C., Chakraborty, S.K.: On Rayleigh waves in Green-Lindsays model of generalized thermoelastic media. Ind. J. Pure Appl. Math. 20, 276–283 (1988)

    MATH  Google Scholar 

  26. Ivanov, T.P.: On the propagation of thermoelastic Rayleigh waves. Wave Motion 10, 73–82 (1988)

    Article  MATH  Google Scholar 

  27. Abd-alla, A.N., Al-dawy, A.A.S.: Thermal relaxation times effect on Rayleigh waves in generalized thermoelastic media. J. Therm. Stress. 24, 367–382 (2001)

    Article  Google Scholar 

  28. Vashishth, A.K., Khurana, P.: Rayleigh modes in anisotropic, heterogeneous poroelastic layers. J. Seismolog. 9, 431–448 (2005)

    Article  Google Scholar 

  29. Kumar, R., Kansal, T.: Effect of rotation on Rayleigh waves in an isotropic generalized thermoelastic diffusive half-space. Arch. Mech. 60, 421–443 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Bucur, A.V., Passarella, F., Tibullo, V.: Rayleigh surface waves in the theory of thermoelastic materials with voids. Meccanica 49, 2069–2078 (2014). doi:10.1007/s11012-013-9850-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Sharma, M.D.: Propagation and attenuation of Rayleigh waves in generalized thermoelastic media. J. Seismol. 18, 61–79 (2014). doi:10.1007/s10950-013-9401-4

    Article  Google Scholar 

  32. Sharma, J.N., Pal, M., Chand, D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284, 227–248 (2005)

  33. Sharma, J.N., Walia, V.: Effect of rotation on Rayleigh waves in piezothermoelastic half space. Int. J. Solids Struct. 44, 1060–1072 (2007a)

    Article  MATH  Google Scholar 

  34. Sharma, J.N., Walia, V.: Further investigations on Rayleigh waves in piezothermoelastic materials. J. Sound Vib. 301, 189–206 (2007b)

  35. Sharma, J.N., Walia, V., Gupta, S.K.: Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. Int. J. Mech. Sci. 50, 433–444 (2008)

    Article  MATH  Google Scholar 

  36. Vinh, P.C., Ngoc Anh, V.T., Thanh, V.: Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact. Wave Motion 51, 496–504 (2014)

    Article  MathSciNet  Google Scholar 

  37. Vinh, P.C., Thanh Hue, T.T.: Rayleigh waves with impedance boundary conditions in anisotropic solids. Wave Motion 51, 1082–1092 (2014)

    Article  MathSciNet  Google Scholar 

  38. Vinh, P.C., Ngoc Anh, V.T.: Rayleigh waves in an orthotropic half-space coated by a thin orthotropic layer with sliding contact. Int. J. Eng. Sci. 75, 154–164 (2014)

    Article  MathSciNet  Google Scholar 

  39. Makarov, S., Chilla, E., Frohlich, H.J.: Determination of elastic constants of thin films from phase velocity dispersion of different surface acoustic wave modes. J. Appl. Phys. 78, 5028–5034 (1995)

    Article  Google Scholar 

  40. Every, A.G.: Measurement of the near-surface elastic properties of solids and thin supported films. Meas. Sci. Technol. 13, R21–R39 (2002)

    Article  Google Scholar 

  41. Kuchler, K., Richter, E.: Ultrasonic surfacewaves for studying the properties of thin films. Thin Solid Films 315, 29–34 (1998)

    Article  Google Scholar 

  42. Hess, P., Lomonosov, A.M., Mayer, A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)

    Article  Google Scholar 

  43. Pham, C.V., Vu, T.N.A.: An approximate secular equation of Rayleigh waves in an isotropic elastic half-space coated with a thin isotropic elastic layer. Acta Mech. 225, 2539–2547 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vellekoop, M.J.: Acoustic wave sensors and their technology. Ultrasonics 36, 7–14 (1998)

  45. Mayer, A.: Thermoelastic attenuation of surface-acoustic waves in coated elastic media. J. Appl. Phys. 68, 5913–5915 (1990)

    Article  Google Scholar 

  46. Gupta, V.: Wave propagation in porous piezoelectric materials. Thesis, Kurukshetra University (2013)

  47. Cady, W.G.: Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. McGraw-Hill, New York (1946)

    Google Scholar 

  48. Vashishth, A.K., Gupta, V.: Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface. J. Acoust. Soc. Am. 129, 3690–3701 (2011)

    Article  Google Scholar 

  49. Zhou, Z.D., Yang, F.P., Kuang, Z.B.: Reflection and transmission of plane waves at the interface of pyroelectric bi-materials. J. Sound Vib. 331, 3558–3566 (2012)

    Article  Google Scholar 

  50. Abd-alla, A.N., Alsheikh, F.A.: Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses. Arch. Appl. Mech. 79, 843–857 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Vashishth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashishth, A.K., Sukhija, H. Coupled Rayleigh waves in a 2-mm piezoelectric layer over a porous piezo-thermoelastic half-space. Acta Mech 228, 773–803 (2017). https://doi.org/10.1007/s00707-016-1733-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1733-z

Navigation