Skip to main content
Log in

A coupled meshfree-mesh-based solution scheme on hybrid grid for flow-induced vibrations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a coupled meshfree-mesh-based fluid solver is employed for flow-induced vibration problems. The fluid domain comprises of a hybrid grid which is formed by generating a body conformal meshfree nodal cloud around the solid object and a static Cartesian grid which surrounds the meshfree cloud in the far field. The meshfree nodal cloud provides flexibility in dealing with solid motion by moving and morphing along with the solid boundary without necessitating re-meshing. The Cartesian grid, on the other hand, provides improved performance by allowing the use of a computationally efficient mesh-based method. The flow equations, in arbitrary Lagrangian–Eulerian formulation, are solved by a local radial basis function in finite difference mode on moving meshfree nodes. Conventional finite differencing is used over the static Cartesian grid for flow equations in Eulerian formulation. The equations for solid motion are solved using a classic Runge–Kutta method. Closed coupling is introduced between fluid and structural solvers by using a sub-iterative prediction–correction algorithm. In order to reduce computational overhead due to sub-iterations, only near-field flow (in the meshfree zone) is solved during the inner iterations. The full fluid domain is solved during outer (time step) iterations only when the convergence at the solid–fluid interface has already been reached. In the meshfree zone, adaptive sizing of the influence domain is introduced to maintain suitable number of neighbouring particles. The use of a hybrid grid has been found to be useful in improving the computational performance by faster computing over the Cartesian grid as well as by reducing the number of computations in the fluid domain during fluid–solid coupling. The solution scheme was tested for problems relating to flow-induced cylindrical and airfoil vibration with one and two degrees of freedom. The results are found to be in good agreement with previous work and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayona, V., Moscoso, M., Carretero, M., Kindelan, M.: RBF-FD formulas and convergence properties. J. Comput. Phys. 229(22), 8281–8295 (2010)

    Article  MATH  Google Scholar 

  2. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994). doi:10.1002/nme.1620370205

    Article  MathSciNet  MATH  Google Scholar 

  3. Braza, M., Chassaing, P., Minh, H.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Tanaka, M.: A meshless, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43(3–5), 379–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chesshire, G., Henshaw, W.D.: Composite overlapping meshes for the solution of partial differential equations. J. Comput. Phys. 90(1), 1–64 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chew, C.S., Yeo, K.S., Shu, C.: A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfreecartesian grids. J. Comput. Phys. 218(2), 510–548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chinchapatnam, P.P., Djidjeli, K., Nair, P.B., Tan, M.: A compact RBF-FD based meshless method for the incompressible Navier–Stokes equations, pp. 275–290 (2009)

  8. Chinchapatnam, P.P., Djidjeli, K., Nair, P.B.: Radial basis function meshless method for the steady incompressible Navier–Stokes equations. Int. J. Comput. Math. 84(10), 1509–1521 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  10. Chow, P., Addison, C.: Putting domain decomposition at the heart of a mesh-based simulation process. Int. J Numer. Methods Fluids 40(12), 1471–1484 (2002)

    Article  MATH  Google Scholar 

  11. Clarke, D.K., Hassan, H., Salas, M.: Euler calculations for multielement airfoils using cartesian grids. AIAA J. 24(3), 353–358 (1986)

    Article  MATH  Google Scholar 

  12. Dahl, J., Hover, F., Triantafyllou, M., Oakley, O.: Dual resonance in vortex-induced vibrations at subcritical and supercritical reynolds numbers. J. Fluid Mech. 643, 395–424 (2010)

    Article  MATH  Google Scholar 

  13. Dai, Z.H.O.U., Jiahuang, T.U., Y, B.: Two degrees of freedom flow-induced vibrations on a cylinder. In: 7th international colloquium on bluff body aerodynamics and applications BBAA7. International association for wind engineering. American Institute of Aeronautics and Astronautics (2012)

  14. De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F.: A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction. Comput. Fluids 86, 558–568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Zeeuw, D., Powell, K.G.: An adaptively refined cartesian mesh solver for the euler equations. AIAA Paper (91-1542) (1991)

  16. Degroote, J., Bruggeman, P., Haelterman, R., Vierendeels, J.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86(2324), 2224–2234 (2008). doi:10.1016/j.compstruc.2008.05.005

    Article  Google Scholar 

  17. Deng, J., Teng, L., Pan, D., Shao, X.: Inertial effects of the semi-passive flapping foil on its energy extraction efficiency. Phys. Fluids 27(5), 053,103 (2015)

    Article  Google Scholar 

  18. Dennis, S., Chang, G.Z.: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech. 42(3), 471–489 (1970)

    Article  MATH  Google Scholar 

  19. Ding, H., Shu, C., Yeo, K.S., Xu, D.: Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method. Comput. Methods Appl. Mech. Eng. 193(9–11), 727–744 (2004)

    Article  MATH  Google Scholar 

  20. Dowell, E., Hall, K.: Modeling of fluid–structure interaction. Annu. Rev. Fluid Mech. 33(1), 445–490 (2001)

    Article  MATH  Google Scholar 

  21. Farhat, C., Lesoinne, M., Maman, N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: threefield formulation, geometric conservation and distributed solution. Int. J. Numer. Methods Fluids 21(10), 807–835 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farhat, C., Lesoinne, M., Le Tallec, P.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Eng. 157(12), 95–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhat, C., van der Zee, K.G., Geuzaine, P.: Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Methods Appl. Mech. Eng. 195(1718), 1973–2001 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feistauer, M., Horacek, J., Ruzicka, M., Sváček, P.: Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom. Comput. Fluids 49(1), 110–127 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Firoozjaee, A.R., Afshar, M.H.: Steady-state solution of incompressible Navier–Stokes equations using discrete least-squares meshless method. Int. J. Numer. Methods Fluids 67(3), 369–382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(04), 819–855 (1980)

    Article  MATH  Google Scholar 

  27. Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93(1), 73–82 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Glowinski, R., Pan, T.W., Periaux, J.: A fictitious domain method for external incompressible viscous flow modeled by Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 112(1), 133–148 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hinatsu, M., Ferziger, J.: Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique. Int. J. Numer. Methods. Fluids 13(8), 971–997 (1991)

    Article  MATH  Google Scholar 

  30. Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14(3), 227–253 (1974). doi:10.1016/0021-9991(74)90051-5

    Article  MATH  Google Scholar 

  31. Ii, S., Sugiyama, K., Takeuchi, S., Takagi, S., Matsumoto, Y.: An implicit full Eulerian method for the fluid–structure interaction problem. Int. J. Numer. Methods. Fluids 65(1–3), 150–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Javed, A., Djidjeli, K., Xing, J.T., Sun, Z.: An ALE based hybrid meshfree local RBF-Cartesian FD scheme for incompressible flow around moving boundaries. AIAA Aviation. American Institute of Aeronautics and Astronautics (2014). doi:10.2514/6.2014-2312

  33. Javed, A., Djijdeli, K., Xing, J.T.: Shape adaptive RBF-FD implicit scheme for incompressible viscous Navier–Stokes equations. Comput. Fluids 89, 38–52 (2014)

    Article  MathSciNet  Google Scholar 

  34. Kamakoti, R., Shyy, W.: Fluid–structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40(8), 535–558 (2004)

    Article  MATH  Google Scholar 

  35. Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics.2. solutions to parabolic, hyperbolic and elliptic partial-differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kim, D., Choi, H.: A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J. Comput. Phys. 162(2), 411–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kinsey, T., Dumas, G.: Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 46(6), 1318–1330 (2008)

    Article  Google Scholar 

  39. Liu, C., Zheng, X., Sung, C.: Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys. 139(1), 35–57 (1998)

    Article  MATH  Google Scholar 

  40. Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14(2), 185–199 (2001)

    Article  MATH  Google Scholar 

  41. Mittal, S., Kumar, V.: Flow-induced vibrations of a light circular cylinder at Reynolds numbers \(10^3\) to \(10^4\). J. Sound Vib. 245(5), 923–946 (2001)

    Article  Google Scholar 

  42. Park, K.: Partitioned transient analysis procedures for coupled-field problems: stability analysis. J. Appl. Mech. 47(2), 370–376 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Perng, C., Street, R.: A coupled multigrid-domain-splitting technique for simulating incompressible flows in geometrically complex domains. Int. J. Numer. Methods Fluids 13(3), 269–286 (1991)

    Article  MATH  Google Scholar 

  44. Picano, F., Breugem, W.P., Brandt, L.: Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463–487 (2015)

    Article  MathSciNet  Google Scholar 

  45. Piperno, S., Farhat, C., Larrouturou, B.: Partitioned procedures for the transient solution of coupled aroelastic problems part i: model problem, theory and two-dimensional application. Comput. Methods Appl. Mech. Eng. 124(12), 79–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Placzek, A., Sigrist, J.F., Hamdouni, A.: Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: forced and free oscillations. Comput. Fluids 38(1), 80–100 (2009)

    Article  MATH  Google Scholar 

  47. Saad, Y., Schultz, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sanyasiraju, Y., Chandhini, G.: Local radial basis function based gridfree scheme for unsteady incompressible viscous flows. J. Comput. Phys. 227(20), 8922–8948 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995). doi:10.1007/BF02432002

    Article  MathSciNet  MATH  Google Scholar 

  50. Shiels, D., Leonard, A., Roshko, A.: Flow-induced vibration of a circular cylinder at limiting structural parameters. J. Fluids Struct. 15(1), 3–21 (2001)

    Article  Google Scholar 

  51. Shu, C., Ding, H., Yeo, K.S.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7–8), 941–954 (2003)

    Article  MATH  Google Scholar 

  52. Sváček, P., Feistauer, M., Horacek, J.: Numerical simulation of flow induced airfoil vibrations with large amplitudes. J. Fluids Struct. 23(3), 391–411 (2007)

    Article  Google Scholar 

  53. Takami, H., Keller, H.B.: Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids 12(12), II-51–II-56 (1969)

    Article  MATH  Google Scholar 

  54. Takashi, N., Hughes, T.J.R.: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput. Methods Appl. Mech. Eng. 95(1), 115–138 (1992)

    Article  MATH  Google Scholar 

  55. Tang, H., Jones, S.C., Sotiropoulos, F.: An overset-grid method for 3d unsteady incompressible flows. J. Comput. Phys. 191(2), 567–600 (2003)

    Article  MATH  Google Scholar 

  56. Tolstykh, A.I., Shirobokov, D.A.: On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput. Mech. 33(1), 68–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tuann, S., Olson, M.D.: Numerical studies of the flow around a circular cylinder by a finite element method. Comput. Fluids 6(4), 219–240 (1978)

    Article  MATH  Google Scholar 

  58. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005). doi:10.1016/j.jcp.2005.03.017

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, J.G., Liu, G.R.: On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput. Methods Appl. Mech. Eng. 191(23–24), 2611–2630 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wright, G.B., Fornberg, B.: Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comput. Phys. 212(1), 99–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, J., Qiu, Y., Shu, C., Zhao, N.: Pitching-motion-activated flapping foil near solid walls for power extraction: a numerical investigation. Phys. Fluids. 26(8), 083,601 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, A., Djijdeli, K. & Xing, J.T. A coupled meshfree-mesh-based solution scheme on hybrid grid for flow-induced vibrations. Acta Mech 227, 2245–2274 (2016). https://doi.org/10.1007/s00707-016-1614-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1614-5

Keywords

Navigation