Skip to main content
Log in

Progressive damage identification using dual extended Kalman filter

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Existing Kalman filter-based parameter identification algorithms estimate the system parameters as either sole states or a subset of augmented states. While the former approach requires the measurement to be sufficiently clean, the latter is reported to have numerical stability issues. Since the parameters are estimated in both these approaches in an optimal sense, in the presence of a significant variation in parameters (due to damage), the estimates may often diverge. In this article, we propose an online health monitoring scheme powered by dual extended Kalman filtering technique to simultaneously estimate the system parameters along with the response states of a reduced-order system. To capacitate damage localization beyond sensor resolution, the proposed method employs location-based structural properties as system parameter. This reduces the dimensionality of the formulation from \({4n^2}\) elements in the state matrix to only a few physical parameters. Unnecessary estimation of a large number of unmeasured response states has been avoided by employing the system reduction technique and thus by describing the system using only measured DOFs. This in turn enables estimating a poorly observed system as a fully observed one. Two numerical experiments are performed on two degrading structures: an Euler–Bernoulli beam and a bridge truss to demonstrate the competency of the algorithm with reduced-order models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Hussein A., Haldar A.: Novel unscented Kalman filter for health assessment of structural systems with unknown input. J. Eng. Mech. 141(7), 04015,012 (2015). doi:10.1002/stc.1764

    Article  Google Scholar 

  2. Al-Hussein A., Haldar A.: Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems. Struct. Control Health Monit. 23(1), 156–175 (2016). doi:10.1061/(ASCE)EM.1943-7889.0000926

    Article  Google Scholar 

  3. Azam, S.E.: Dual estimation and reduced order modeling of damaging structures. In: Online Damage Detection in Structural Systems, pp. 105–121. Springer, Berlin (2014). doi:10.1007/978-3-319-02559-9-5

  4. Azam S.E., Chatzi E., Papadimitriou C.: A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech. Syst. Signal Process. 60, 866–886 (2015). doi:10.1016/j.mechrescom.2012.08.006

    Article  Google Scholar 

  5. Azam S.E., Mariani S.: Dual estimation of partially observed nonlinear structural systems: a particle filter approach. Mech. Res. Commun. 46, 54–61 (2012). doi:10.1016/j.ymssp.2015.02.001

    Article  Google Scholar 

  6. Bernal D., Beck J.: Preface to the special issue on phase I of the IASC-ASCE structural health monitoring benchmark. J. Eng. Mech. 130(1), 1–2 (2004). doi:10.1061/(ASCE)0733-9399(2004)130:1(1)

    Article  Google Scholar 

  7. Capellari, G., Azam, S.E., Mariani, S.: Online damage detection in plates via vibration measurements. In: Model Validation and Uncertainty Quantification, vol. 3, pp. 85–91. Springer, Berlin (2015). doi:10.1007/978-3-319-15224-0-9

  8. Chatzi E.N., Smyth A.W.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit. 16(1), 99–123 (2009). doi:10.1002/stc.290

    Article  Google Scholar 

  9. Chatzi E.N., Smyth A.W.: Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications. Struct. Control Health Monit. 20(7), 1081–1095 (2013). doi:10.1002/stc.1520

    Article  Google Scholar 

  10. Chen Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)

    Article  Google Scholar 

  11. Cheng C., Cebon D.: Parameter and state estimation for articulated heavy vehicles. Veh. Syst. Dyn. 49(1–2), 399–418 (2011). doi:10.1080/00423110903406656

    Article  Google Scholar 

  12. Corigliano A., Mariani S.: Parameter identification in explicit structural dynamics: performance of the extended Kalman filter. Comput. Methods Appl. Mech. Eng. 193(36), 3807–3835 (2004). doi:10.1016/j.cma.2004.02.003

    Article  MATH  Google Scholar 

  13. Corigliano, A., Mariani, S., Zinovyeva, O., Karpenko, N.: 4637-Identification of laminate mechanical properties via extended Kalman filter. In: ICF11, Italy 2005 (2013)

  14. Das, A.K., Haldar, A., Chakraborty, S.: Health assessment of large two dimensional structures using limited information: recent advances. Adv. Civ. Eng. (2011). doi:10.1155/2012/582472

  15. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Technical report. Los Alamos National Lab., NM (1996). doi:10.2172/249299

  16. Doebling S.W., Farrar C.R., Prime M.B. et al.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)

    Article  Google Scholar 

  17. Farrar C.R., Doebling S.W., Nix D.A.: Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 131–149 (2001). doi:10.1098/rsta.2000.0717

    Article  MATH  Google Scholar 

  18. Ghanem R., Shinozuka M.: Structural-system identification. I: theory. J. Eng. Mech. 121(2), 255–264 (1995). doi:10.1061/(ASCE)0733-9399(1995)121:2(255)

    Article  Google Scholar 

  19. Haykin, S.S., Haykin, S.S., Haykin, S.S.: Kalman filtering and neural networks. Wiley Online Library (2001). doi:10.1002/0471221546.fmatter-indsub

  20. Hoshiya M., Saito E.: Structural identification by extended Kalman filter. J. Eng. Mech. 110(12), 1757–1770 (1984). doi:10.1061/(ASCE)0733-9399(1984)110:12(1757)

    Article  Google Scholar 

  21. Johnson E.A., Lam H.F., Katafygiotis L.S., Beck J.L.: Phase II ASC-ASCE structural health monitoring benchmark problem using simulated data. J. Eng. Mech. 130(1), 3–15 (2004). doi:10.1061/(ASCE)0733-9399(2004)130:1(3)

    Article  Google Scholar 

  22. Julier S.J., Uhlmann J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004). doi:10.1109/JPROC.2003.823141

    Article  Google Scholar 

  23. Kalman R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). doi:10.1115/1.3662552

    Article  Google Scholar 

  24. Khodadadi H., Jazayeri-Rad H.: Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor. Comput. Chem. Eng. 35(11), 2426–2436 (2011). doi:10.1016/j.compchemeng.2010.12.010

    Article  Google Scholar 

  25. Ljung L.: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 24(1), 36–50 (1979). doi:10.1109/TAC.1979.1101943

    Article  MathSciNet  MATH  Google Scholar 

  26. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification, Cambridge: MIT Press, (1983), URN:urn:nbn:se:liu:diva-102246

  27. Mariani S., Corigliano A.: Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters. Comput. Methods Appl. Mech. Eng. 194(50), 5242–5272 (2005). doi:10.1016/j.cma.2005.01.007

    Article  MATH  Google Scholar 

  28. Mariani S., Ghisi A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49(1–2), 131–150 (2007). doi:10.1007/s11071-006-9118-9

    Article  MATH  Google Scholar 

  29. Maruyama, O., Hoshiya, M.: System identification of an experimental model by extended Kalman filter. In: Structural Safety and Reliability: ICOSSAR’01, p. 2001 (2001)

  30. Mehrjoo M., Khaji N., Moharrami H., Bahreininejad A.: Damage detection of truss bridge joints using artificial neural networks. Expert Syst. Appl. 35(3), 1122–1131 (2008). doi:10.1016/j.eswa.2007.08.008

    Article  Google Scholar 

  31. Nævdal G., Johnsen L.M., Aanonsen S.I., Vefring E.H. et al.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10(01), 66–74 (2005). doi:10.2118/84372-PA

    Article  Google Scholar 

  32. Nelson L.W., Stear E.: The simultaneous on-line estimation of parameters and states in linear systems. IEEE Trans. Autom. Control 21(1), 94–98 (1976). doi:10.1109/TAC.1976.1101148

    Article  MATH  Google Scholar 

  33. O’Callahan, J., Avitabile, P., Riemer, R.: System equivalent reduction expansion process (SEREP). In: Proceedings of the 7th International Modal Analysis Conference, vol. 1, pp. 29–37. Union College Schnectady, NY (1989)

  34. Plett G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277–292 (2004). doi:10.1016/j.jpowsour.2004.02.033

    Article  Google Scholar 

  35. Rytter, A.: Vibration Based Inspection of Civil Engineering Structures, Ph.D. Thesis. Aalborg University Denmark (1993)

  36. Sato T., Takei K.: Development of a Kalman filter with fading memory. Struct. Saf. Reliab. 387, 394 (1998)

    Google Scholar 

  37. Shinozuka M., Ghanem R.: Structural system identification. II: experimental verification. J. Eng. Mech. 121(2), 265–273 (1995). doi:10.1061/(ASCE)0733-9399(1995)121:2(265)

    Article  Google Scholar 

  38. Sholeh K., Vafai A., Kaveh A.: Online detection of the breathing crack using an adaptive tracking technique. Acta Mech. 188(3–4), 139–154 (2007). doi:10.1007/s00707-006-0383-y

    Article  MATH  Google Scholar 

  39. Smyth A., Masri S., Chassiakos A., Caughey T.: On-line parametric identification of MDOF nonlinear hysteretic systems. J. Eng. Mech. 125(2), 133–142 (1999). doi:10.1061/(ASCE)0733-9399(1999)125:2(133)

    Article  Google Scholar 

  40. Smyth A.W., Masri S.F., Kosmatopoulos E.B., Chassiakos A.G., Caughey T.K.: Development of adaptive modeling techniques for non-linear hysteretic systems. Int. J. Non-Linear Mech. 37(8), 1435–1451 (2002). doi:10.1016/S0020-7462(02)00031-8

    Article  MATH  Google Scholar 

  41. Wan E.A., Nelson A.T.: Dual Kalman filtering methods for nonlinear prediction, estimation, and smoothing. Adv. Neural Inf. Process. Syst. 9, 793–799 (1997)

    Google Scholar 

  42. Wan, E.A., Nelson, A.T.: Dual extended Kalman filter methods. In: Kalman Filtering and Neural Networks, pp. 123–173 (2001)

  43. Welch, G., Bishop, G.: An Introduction to the Kalman Filter, Technical report, TR 95-041. Department of Computer Science, University of North Carolina (1995)

  44. Wu M., Smyth A.W.: Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct. Control Health Monit. 14(7), 971–990 (2007). doi:10.1002/stc.186

    Article  Google Scholar 

  45. Yang J.N., Lei Y., Lin S., Huang N.: Hilbert–Huang based approach for structural damage detection. J. Eng. Mech. 130(1), 85–95 (2004). doi:10.1061/(ASCE)0733-9399(2004)130:1(85)

    Article  Google Scholar 

  46. Yoshida, I.: Damage detection using Monte Carlo filter based on non-Gaussian noise. In: Structural Safety and Reliability: ICOSSAR’01, p. 2001 (2001)

  47. Yuen K.V., Liang P.F., Kuok S.C.: Online estimation of noise parameters for Kalman filter. Struct. Eng. Mech. 47(3), 361–381 (2013). doi:10.12989/sem.2013.47.3.361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baidurya Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Bhattacharya, B. Progressive damage identification using dual extended Kalman filter. Acta Mech 227, 2099–2109 (2016). https://doi.org/10.1007/s00707-016-1590-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1590-9

Keywords

Navigation