Skip to main content
Log in

An efficient finite element solution using a large pre-solved regular element

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper a finite element algorithm is presented using a large pre-solved hyper element. Utilizing the largest rectangle/cuboid inside an arbitrary domain, a large hyper element is developed that is solved using graph product rules. This pre-solved hyper element is efficiently inserted into the finite element formulation of partial differential equations (PDE) and engineering problems to reduce the computational complexity and execution time of the solution. A general solution of the large pre-solved element for a uniform mesh of triangular and rectangular elements is formulated for second-order PDEs. The efficiency of the algorithm depends on the relative size of the large element and the domain; however, the method remains as efficient as a classic method for even relatively small sizes. The application of the method is demonstrated using different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, Mineola (2012)

    Google Scholar 

  2. Mitchell A.R., Wait R.: The Finite Element Method in Partial Differential Equations. Wiley, New York (1977)

    MATH  Google Scholar 

  3. Babuska I., Tempone R., Zouraris G.E.: Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42, 800–825 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gelinas R., Doss S., Miller K.: The moving finite element method: applications to general partial differential equations with multiple large gradients. J. Comput. Phys. 40, 202–249 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gabay D., Mercier B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  6. Oden J.T., Prudhomme S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41, 735–756 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ihlenburg F., Babuška I.: Finite element solution of the Helmholtz equation with high wave number Part I: the h-version of the FEM. Comput. Math. Appl. 30, 9–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zienkiewicz O.C., Taylor R.L., Zienkiewicz O.C., Taylor R.L.: The Finite Element Method. McGraw-Hill, London (1977)

    MATH  Google Scholar 

  9. Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  10. Hughes T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, Mineola (2012)

    Google Scholar 

  11. Kaveh A.: Computational Structural Analysis and Finite Element Methods. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  12. Rao S.S.: The Finite Element Method in Engineering: Pergamon International Library of Science, Technology, Engineering and Social Studies. Elsevier, Amsterdam (2013)

    Google Scholar 

  13. Rao S.S.: The Finite Element Method in Engineering. Butterworth-Heinemann, London (2005)

    MATH  Google Scholar 

  14. Bathe, K.-J.: Finite Element Procedures. Klaus-Jurgen Bathe, Prentice Hall, Upper Saddle River, 07458 (1996)

  15. Zienkiewicz O., Taylor R., Too J.: Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Eng. 3, 275–290 (1971)

    Article  MATH  Google Scholar 

  16. Zienkiewicz O.C., Taylor R.L.: The Finite Element Method: Solid Mechanics. Butterworth–Heinemann, London (2000)

    MATH  Google Scholar 

  17. Saad Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  18. Gibbs N.E., PooleJ. William G., Stockmeyer P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13, 236–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grote M.J., Huckle T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18, 838–853 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Evans, D.: The analysis and application of sparse matrix algorithms in the finite element method. In: Whiteman, J.R. (ed.) The Mathematics of Finite Elements and Applications, pp. 427–447. Academic Press, London (1973)

  21. Zingoni A.: A group-theoretic formulation for symmetric finite elements. Finite Elem. Anal. Des. 41, 615–635 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kaveh A.: Optimal Structural Analysis. 2nd edn. Wiley, Chichester (2006)

    MATH  Google Scholar 

  23. Kaveh A., Shojaei I., Rahami H.: New developments in the optimal analysis of regular and near-regular structures: decomposition, graph products, force method. Acta Mech. 226, 665–681 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaveh A., Rahami H.: An efficient analysis of repetitive structures generated by graph products. Int. J. Numer. Methods Eng. 84, 108–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shojaei I., Kaveh A., Rahami H.: Analysis of structures convertible to repeated structures using graph products. Comput. Struct. 125, 153–163 (2013)

    Article  Google Scholar 

  26. Kaveh A., Rahami H.: Factorization for efficient solution of eigenproblems of adjacency and Laplacian matrices for graph products. Int. J. Numer. Methods Eng. 75, 58–82 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahami, H., Kaveh, A., Shojaei, I., Gholipour, Y.: Analysis of irregular structures composed of regular and irregular parts using graph products. J. Comput. Civil Eng. 28, 04014016-1–04014016-11 (2014)

  28. Molano R., Rodríguez P.G., Caro A., Durán M.L.: Finding the largest area rectangle of arbitrary orientation in a closed contour. Appl. Math. Comput. 218, 9866–9874 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: STOC ’87 Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6. ACM, New York (1987)

  30. Williams V.V.: Breaking the Coppersmith–Winograd Barrier. UC Berkeley and Stanford University, USA (2011)

    Google Scholar 

  31. Gall, F.L.: Powers of Tensors and Fast Matrix Multiplication. arXiv:1401.7714 (2014)

  32. Adams M.A., Burton A.K., Dolan P., Bogduk N.: The Biomechanics of Back Pain. Churchill Livingstone, London (2007)

    Google Scholar 

  33. Unnikrishnan G.U., Barest G.D., Berry D.B., Hussein A.I., Morgan E.F.: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra. J. Biomech. Eng. 135, 101007 (2013)

    Article  Google Scholar 

  34. Shojaei, I., Arjmand, N., Bazrgari, B.: An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics. Int. J. Numer. Method. Biomed Eng. (2015). doi:10.1002/cnm.2729

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei, I., Kaveh, A. & Rahami, H. An efficient finite element solution using a large pre-solved regular element. Acta Mech 227, 1331–1349 (2016). https://doi.org/10.1007/s00707-015-1552-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1552-7

Keywords

Navigation