Skip to main content

Advertisement

Log in

Energy-based iteration scheme of the double-multiple streamtube model in vertical-axis wind turbines

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Due to their simplicity, blade element momentum models, such as the double-multiple streamtube (DMS) model, are among the most common models to predict the performance of Darrieus vertical-axis wind turbines (VAWTs). A two-dimensional energy-based iteration scheme of the DMS model (EB-DMSM) is shown in the present work. Its purpose is to improve predictions of power performance and flow expansion. This new approach is compared with a momentum-based iteration scheme (MB-DMSM) and the results of a two-dimensional computational simulation of a 12-kW straight-bladed VAWT. The mathematical representation of streamlines used for modeling the flow expansion is in good agreement with the simulations. Convergence of both schemes is achieved for tip-speed ratios (TSRs) up to 4. Failure of the models to convergence at higher TSRs is attributed to their inability to adequately represent the aerodynamic forces acting on the blades, due to the simplicity of their formulation. Relative to computational simulations, the maximum differences in the peak power coefficient predictions are 16 and 32 % and in the flow expansion predictions are 53 and 5 % for the MB-DMSM and EB-DMSM, respectively. Corrections are required to improve predictions of power performance and flow expansion of turbines with different geometric and operational parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Islam M., Ting D.S.K., Fartaj A.: Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renew. Sustain. Energy Rev. 12, 1087–1109 (2008)

    Article  Google Scholar 

  2. Bhutta M.M.A., Hayat N., Farooq A.U., Ali Z., Jamil S.R., Hussain Z.: Vertical axis wind turbine—a review of various configurations and design techniques. Renew. Sustain. Energy Rev. 16, 1926–1939 (2012)

    Article  Google Scholar 

  3. Mertens S., van Kuik G., van Bussel G.: Performance of an H-Darrieus in the skewed flow on a roof. J. Sol. Energy Eng. 125, 433–440 (2003)

    Article  Google Scholar 

  4. Balduzzi F., Bianchini A., Carnevale E.A., Ferrari L., Magnani S.: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97, 921–929 (2012)

    Article  Google Scholar 

  5. Jamieson P.: Innovation in Wind Turbine Design. Wiley, New York (2011)

    Book  Google Scholar 

  6. Whittlesey R.W., Liska S., Dabiri J.O.: Fish schooling as a basis for vertical axis wind turbine farm design. Bioinspir. Biomim. 5, 035005 (2010)

    Article  Google Scholar 

  7. Dabiri J.O.: Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. J. Renew. Sustain. Energy 3, 043104-1 (2011)

  8. Kinzel M., Mulligan Q., Dabiri J.O.: Energy exchange in an array of vertical-axis wind turbines. J. Turbul. 13(38), 1–13 (2012)

    Google Scholar 

  9. Meyers J., Meneveau C.: Optimal turbine spacing in fully developed wind farm boundary layers. Wind Energy 15, 305–317 (2012)

    Article  Google Scholar 

  10. Cervarich M.C., Roy S.B., Zhou L.: Spatiotemporal structure of wind farm-atmospheric boundary layer interactions. Energy Proced. 40, 530–536 (2013)

    Article  Google Scholar 

  11. Paraschivoiu I., Delclaux F.: Double multiple streamtube model with recent improvements. J. Energy 7(3), 250–255 (1983)

    Article  Google Scholar 

  12. Zanon A., Giannattasio P., Ferreira C.J.S.: A vortex panel model for the simulation of the wake past a vertical axis wind turbine in dynamic stall. Wind Energy 16, 661–680 (2013)

    Article  Google Scholar 

  13. Paraschivoiu, I.: Double-multiple streamtube model for Darrieus wind turbines. In: Second DOE/NASA wind turbines dynamics workshop, pp. 19–25. NASA CP-2186, Cleveland, OH (1981)

  14. Paraschivoiu I., Fraunié P., Béguier C.: Streamtube expansion effects on the Darrieus wind turbine. J. Propuls. 1(2), 150–155 (1985)

    Article  Google Scholar 

  15. McIntosh S.C., Babinsky H.: Convergence failure and stall hysteresis in actuator-disk momentum models applied to vertical axis wind turbines. J. Sol. Energy Eng. 131, 034502-1 (2009)

  16. Kjellin J., Bülow F., Eriksson S., Deglaire P., Leijon M., Bernhoff H.: Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew. Energy 36, 3050–3053 (2011)

    Article  Google Scholar 

  17. Castelli M.R., Englaro A., Benini E.: The Darrieus wind turbine: proposal for a new performance prediction model based on CFD. Energy 36, 4919–4934 (2011)

    Article  Google Scholar 

  18. Castelli M.R., Grandi G., Benini E.: Numerical Analysis of the Performance of the DU91-W2-250 Airfoil for Straight-Bladed Vertical-Axis Wind Turbine Application. World Academy of Science. Engineering and Technology 63, 855–860 (2012)

    Google Scholar 

  19. Rossetti A., Pavesi G.: Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renew. Energy 50, 7–19 (2013)

    Article  Google Scholar 

  20. Chung T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  21. Chen H., Patel V.: Near-wall turbulence models for complex flows including separation. AIAA J. 26(6), 641–648 (1988)

    Article  Google Scholar 

  22. Castelli, M., De Betta, S., Benini, E.: Numerical investigation of the optimal spatial domain discretization for the 2-D analysis of a Darrieus vertical-axis water turbine. In: Proceedings of World Academy of Science, Engineering and Technology 64 (2012)

  23. Beri H., Yao Y.: Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using fluent. J. Appl. Sci. 11(6), 962–970 (2011)

    Article  Google Scholar 

  24. Howell R., Qin N., Edwards J., Durrani N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 35(2), 412–422 (2010)

    Article  Google Scholar 

  25. Sheldahl, R.E., Klimas, P.C.: Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. Sandia National Laboratories—energy report, SAND80-2114 (1981)

  26. Fujisawa N., Shibuya S.: Observations of dynamic stall on Darrieus wind turbine blades. J. Wind Eng. Ind. Aerodyn. 89, 201–214 (2001)

    Article  Google Scholar 

  27. Paraschivoiu I.: Wind Turbine Design: With Emphasis on Darrieus Concept. Press Internationales Polytechnique, Montreal (2002)

    Google Scholar 

  28. Paraschivoiu I., Désy P., Masson C.: Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor. J. Propuls. 4(1), 73–80 (1988)

    Article  Google Scholar 

  29. Delnero J.S., Marañon di Leo J., Bacchi F.A., Colman J., Colman J.: Experimental determination of the influence of turbulent scale on the lift and drag coefficients of low Reynolds number airfoils. Latin Am. Appl. Res. 35, 183–188 (2005)

    Google Scholar 

  30. Bedon G., Antonini E.G.A., Betta S., Castelli M.R., Benini E.: Evaluation of different aerodynamic databases for vertical axis wind turbine simulations. Renew. Sustain. Energy Rev. 40, 386–399 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams R. Calderón-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendler, R., Calderón-Muñoz, W.R. & LeBoeuf, R. Energy-based iteration scheme of the double-multiple streamtube model in vertical-axis wind turbines. Acta Mech 227, 3295–3303 (2016). https://doi.org/10.1007/s00707-015-1544-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1544-7

Keywords

Navigation