Skip to main content
Log in

Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The covariance principle of the theory of relativity within a four-dimensional framework ensures the validity of any equations and physical relations through any changes of frame of reference, due to the definition of the 4D space–time and the use of 4D tensors, operations and operators. This 4D formalism enables also to clearly distinguish between the covariance principle (i.e., frame-indifference) and the material objectivity principle (i.e., indifference to any rigid body motion superposition). We propose and apply here a method to build a constitutive relation for elastic materials using such a 4D formalism. The present article is specifically devoted in the application of this methodology to construct hypo-elastic materials with the use of the 4D Lie derivative. It enables thus to obtain consistent non-dissipative models equivalent to (hyper)elastic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Speziale C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51, 489 (1998)

    Article  Google Scholar 

  2. Frewer M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  MATH  Google Scholar 

  3. Romano G., Baretta R.: Covariant hypo-elasticity. Eur. J. Mech. A Solids 30, 1012–1023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Romano G., Baretta R.: Geometric constitutive theory and frame invariance. Int. J. Non-Linear Mech. 51, 75–86 (2013)

    Article  Google Scholar 

  5. Eringen A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  6. Malvern L.E.: Introduction to the Mechanics of Continuous Medium. Prentice Hall, Upper Saddle River (1969)

    MATH  Google Scholar 

  7. Truesdell C., Noll W.: The Non-Linear Field Theories of Mechanics, third edition. Springer, New York (2003)

    MATH  Google Scholar 

  8. Murdoch A.I.: Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu I.S.: Further remarks on euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 17, 125–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stumpf H., Hoppe U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Math. Mech. 77, 327–339 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Marsden J.E., Hugues J.R.: Mathematical Foundation of Elasticity. Prentice Hall, Upper Saddle River (1983)

    Google Scholar 

  13. Rougée P.: A new Lagrangian intrinsic approach to large deformations in continuous media. Eur. J. Mech. A Solids 10, 15–39 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Rougée P.: An intrinsic Lagrangian statement of constitutive laws in large strain. Comput. Struct. 84, 1125–1133 (2006)

    Article  MathSciNet  Google Scholar 

  15. Simo J.C., Marsden J.E.: On the rotated stress tensor and the material version of the Doyle-Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simo J.C., Ortiz M.: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Eng. 49, 221–245 (1985)

    Article  MATH  Google Scholar 

  17. Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903-1–042903-53 (2006)

  18. Yavari A., Ozakin A.: Covariance in linearized elasticity. Z. Angew. Math. Phys. 59, 1081–1110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yavari, A., Marsden, J.E.: Covariantization of nonlinear elasticity. Z. Angew. Math. Phys. 63, 921–927 (2012)

  20. Xiao H., Bruhns O.T., Meyers A.: Existence and uniqueness of the integrable-exactly hypoelastic equation and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)

    Article  MATH  Google Scholar 

  21. Weinberg S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  22. Landau L.D., Lifshitz E.M.: The Classical Theory of Fields, fourth edition. Elsevier, Amsterdam (1975)

    MATH  Google Scholar 

  23. Panicaud B., Rouhaud E.: A frame-indifferent model for a thermo-elastic material beyond the three-dimensional Eulerian and Lagrangian descriptions. Contin. Mech. Thermodyn. 26, 79–93 (2014)

    Article  MathSciNet  Google Scholar 

  24. Rouhaud E., Panicaud B., Kerner R.: Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry. Comput. Mater. Sci. 77, 120–130 (2013)

    Article  Google Scholar 

  25. Murdoch A.I.: On objectivity and material symmetry for simple elastic solids. J. Elast. 60, 233–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu I.S.: On euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 16, 177–183 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Murdoch A.I.: On criticism of the nature of objectivity in classical continuum physics. Contin. Mech. Thermodyn. 17, 135–148 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sidoroff, F.: Cours sur les grandes déformations, Ecole d’été Sophia-Antipolis, Rapport GRECO (1982)

  29. Dogui A., Sidoroff F.: Kinematic hardening in large elastoplastic strain. Eng. Fract. Mech. 21, 685–695 (1985)

    Article  Google Scholar 

  30. Badreddine H., Saanouni K., Dogui A.: On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int. J. Plast. 26, 1541–1575 (2010)

    Article  MATH  Google Scholar 

  31. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzber. Akad. Wiss. Wien, Abt. Iia. 120, 385–530 (1911)

  32. Green A.E., Naghdi P.M.: A general theory of an elastic-plastic continuum. Arch. Ration. Mech. Anal. 18, 251–281 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Forest, S.: Lois de comportement en transformations finies, in Aussois (2008)

  34. Levi-Civita T., Persico E., Long M.: The Absolute Differential Calculus. Dover Phoenix Editions, New York (2005)

    Google Scholar 

  35. Schouten J.A.: Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications. Springer, New York (1954)

    Book  MATH  Google Scholar 

  36. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W. H. Freeman and Co Ltd., New York (1973)

    Google Scholar 

  37. Boratav M., Kerner R.: Relativité. Ellipses, Paris (1991)

  38. Bressan A.: Relativistic Theories of Materials. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  39. Capurro M.: A general field theory of cauchy continuum: Classical mechanics. Acta Mech. 49, 169–190 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ferrarese G., Bini D.: Relativistic kinematics for a three-dimensional continuum. Lect. Notes Phys. 727, 169–206 (2008)

    Article  MathSciNet  Google Scholar 

  41. Grot R.A., Eringen A.C.: Relativistic continuum mechanics part i mechanics and thermodynamics. Int. J. Eng. Sci. 4, 611–638 (1966)

    Article  Google Scholar 

  42. Kienzler R., Herrmann G.: On the four-dimensional formalism in continuum mechanics. Acta Mech. 161, 103–125 (2003)

    Article  MATH  Google Scholar 

  43. Lamoureux-Brousse L.: Infinitesimal deformations of finite conjugacies in non-linear classical or general relativistic theory of elasticity. Phys. D 35, 203–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maugin G.: Un modèle viscoélastique en relativité générale. Compt. Rendus Acad. Sci. 272A, 1482–1484 (1971)

    MathSciNet  Google Scholar 

  45. Maugin G.: Sur une possible définition du principe d’indifférence matérielle en relativité. Compt. Rendus Acad. Sci. 275A, 319–322 (1972)

    MathSciNet  Google Scholar 

  46. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  47. Ottinger H.C.: Relativistic and non-relativistic description of fluids with anisotropic heat conduction. Phys. A 254, 433–450 (1998)

    Article  Google Scholar 

  48. Tsypkin A.G.: On complicated models of continuous media in the general theory of relativity. PMM USSR 51, 698–703 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Vallée C.: Relativistic thermodynamics of continua. Int. J. Eng. Sci. 19, 589–601 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  50. Williams D.N.: The elastic energy momentum tensor in special relativity. Ann. Phys. 196, 345–380 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  51. Arminjon M., Reifler F.: General reference frames and their associated space manifolds. Int. J. Geom. Methods Mod. Phys. 8, 155–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Brunet M.: Analyse non-linaire des matriaux et des structures. INSA de Lyon, Lyon (2009)

    Google Scholar 

  53. Sidoroff F., Dogui A.: Some issues about anisotropic elastic-plastic models at finite strain. Int. J. Solids Struct. 38, 9569–9578 (2001)

    Article  MATH  Google Scholar 

  54. Labergère C., Saanouni K., Lestriez P.: Numerical design of extrusion process using finite thermo-elastoviscoplasticity with damage. Prediction of chevron shaped cracks. Key Eng. Mater. 424, 265–272 (2010)

    Article  Google Scholar 

  55. Müller I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  56. Landau L.D., Lifshitz E.M.: Fluid Mechanics, second edition. Elsevier, Amsterdam (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Panicaud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicaud, B., Rouhaud, E., Altmeyer, G. et al. Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry. Acta Mech 227, 651–675 (2016). https://doi.org/10.1007/s00707-015-1470-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1470-8

Keywords

Navigation