Skip to main content

Advertisement

Log in

Material covariant constitutive laws for continua with internal structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, we study the transformation properties of the local form of the material (referential) balance of energy equation under the superposition of arbitrary material diffeomorphisms. For this purpose, the tensor analysis on manifolds is utilized. We show that the material balance of energy equation, in general, cannot be invariant; in fact an extra term appears in the transformed balance of energy equation, which is directly related to the work performed by the configurational stresses. By making the fundamental assumption that the body and the ambient space manifolds are always related in the course of deformation and by utilizing the metric concept, we determine this extra term. Building on this, we derive several constitutive equations for the material stress tensor. The compatibility of these constitutive equations with the second law of thermodynamics is evaluated. Finally, we postulate that the material balance of energy equation is covariant, and we study this case in detail, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (original edition by Prentice Hall, 1983) (1994)

  2. Doyle T.C., Ericksen J.L.: Nonlinear Elasticity Advances in Applied Mechanics. Academic Press, New York (1956)

    Google Scholar 

  3. Yavari A., Marsden J.E., Ortiz M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 1–53 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gurtin M.E.: The nature of configurational forces. Arch. Ration. Mech. Anal. 131, 67–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Valanis K.C.: The concept of physical metric in thermodynamics. Acta Mech. 113, 169–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Valanis K.C., Panoskaltsis V.P.: Material metric, connectivity and dislocations in continua. Acta Mech. 175, 77–103 (2005)

    Article  MATH  Google Scholar 

  7. Panoskaltsis V.P., Soldatos D., Triantafyllou S.P.: The concept of physical metric in rate-independent generalized plasticity. Acta Mech. 221, 49–64 (2011)

    Article  MATH  Google Scholar 

  8. Simo J.C., Marsden J.E., Krishnaprasad P.S.: The Hamiltonian structure of elasticity. The convected representation of solids, rods and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Stumpf H, Hoppe U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z. Angew. Math. Mech. 77, 327–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ganghoffer J.F.: Differential geometry, least action principles and irreversible processes. Rend. Sem. Mat. Univ. Pol. Torino 65, 171–203 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Bishop R.L., Goldberg I.: Tensor Analysis on Manifolds. Dover, New York (1980)

    MATH  Google Scholar 

  12. Panoskaltsis, V.P., Soldatos, D.: A phenomenological constitutive model of non-conventional elastic response. Int. J. Appl. Mech. 05(04) (2013). doi:10.1142/S1758825113500361

  13. Gurtin M.E.: On a framework for small-deformation viscoplasticity: free energy, microforces, strain gradients. Int. J. Plast. 19, 47–90 (2003)

    Article  MATH  Google Scholar 

  14. Gurtin, M.E., Anand, L.: The decomposition F = F e F p, material symmetry, and plastic irrotationality for solids that are isotropic–viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005)

  15. Panoskaltsis V.P., Soldatos D.: On spatial covariance, second law of thermodynamics and configurational forces in continua. Entropy 16, 3234–3256 (2014). doi:10.3390/e1606323

    Article  MathSciNet  Google Scholar 

  16. Gotay, M.J., Isemberg, J., Marsden, J.E., Montgomery, R. with the collaboration of Sniatycki J. and Yasskin, P. B.: Momentum Maps and Classical Fields. Part I: Covariant Field Theory (2003). arXiv:Physics/9801019v2

  17. Rahouadj R., Ganghoffer J.F., Cunat C.: A thermodynamic approach with internal variables using Lagrange formalism. Part I: General framework. Mech. Res. Commun. 30, 109–117 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rahouadj R., Ganghoffer J.F., Cunat C.: A thermodynamic approach with internal variables using Lagrange formalism. Part 2: Continuous symmetries in the case of the time–temperature equivalence. Mech. Res. Commun. 30, 119–123 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Romero I.: A characterization of conserved quantities in non-equilibrium thermodynamics. Entropy 15, 5580–5596 (2013)

    Article  Google Scholar 

  20. Ganghoffer, J.F.: Symmetries in mechanics: from field theories to master responses in the constitutive modeling of materials. In: Ganghoffer, J.F., Mladenov, I. (eds.) Similarity and Symmetry Methods, Applications in Elasticity and Mechanics of Materials, pp. 271–351. Springer, Berlin (2014)

  21. Perzyna P.: On the thermomechanical foundations of viscoplasticity. In: Lindolm, U.S. (ed.) Mechanical Behavior of Materials under Dynamic Loads, pp. 61–76. Springer, Wien (1968)

    Chapter  Google Scholar 

  22. Lubliner J.: On the structure of the rate equations of material with internal variables. Acta Mech. 17, 109–119 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubliner J.: An axiomatic model of rate-independent plasticity. Int. J. Solids Struct. 16, 709–713 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Szekeres P.: A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  25. Fock V.: Three lectures on relativity theory. Rev. Mod. Phys. 29, 325–333 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Norton J. D.: Did Einstein stumble? The debate over general covariance. Erkenntnis 42, 223–245 (1995)

    Article  MathSciNet  Google Scholar 

  27. Bernstein B.: Hypo-elasticity and elasticity. Arch. Ration. Mech. Anal. 6, 90–104 (1960)

    MathSciNet  MATH  Google Scholar 

  28. Simo J.C., Pister K.S.: Remarks on rate constitutive equations for finite deformation problems: computational implications. Comput. Methods Appl. Mech. Eng. 46, 201–215 (1984)

    Article  MATH  Google Scholar 

  29. Xiao H, Bruhns O.T., Meyers A.: On the existence and uniqueness of the integrable exactly hypoelastic equation \({\dot {\tau}^{{\ast}}=\lambda ({\rm tr}{\mathbf {D}}){\mathbf {I}}+{2} \mu {\mathbf {D}}}\) and its significance to finite inelasticity. Acta Mech. 138, 31–50 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Panoskaltsis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panoskaltsis, V.P., Soldatos, D. Material covariant constitutive laws for continua with internal structure. Acta Mech 227, 881–898 (2016). https://doi.org/10.1007/s00707-015-1436-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1436-x

Keywords

Navigation