Skip to main content
Log in

Chemical reactions in spherically symmetric problems of mechanochemistry

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A stress-assisted chemical reaction front propagation in a linear elastic solid is considered. The reaction between gas and solid constituents is sustained by the diffusion of the gas through the transformed material. The consideration is based on the kinetic equation in a form of the dependence of the reaction front velocity on the normal component of the chemical affinity tensor that in turn depends on stresses and gas concentration. Spherically symmetric problems of mechanochemistry are solved for the reaction front propagation in a sphere, in a body with a spherical hole and in an inclusion placed into an infinite medium. It is demonstrated how stresses can enhance, retard and even lock the reaction. The effects of the sign and value of the reaction front curvature are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeyaratne R., Knowles J.K.: Evolution of Phase Transitions. A Continuum Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Buttner C.C., Zacharias M.: Retarded oxidation of Si nanowires. Appl. Phys. Lett. 89, 263106 (2006)

    Article  Google Scholar 

  3. De Donde T.: Thermodynamic Theory of Affinity: A Book of Principles. Oxford University Press, Oxford (1936)

    Google Scholar 

  4. El-Kareh B.: Fundamentals of Semiconductor Processing Technologies. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  5. Eshelby J.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freidin, A.B.: Crazes and shear bands in glassy polymer as layers of a new phase. Mech. Compos. Mater. 25, 1–7 (1989)

  7. Freidin A.B.: On new phase inclusions in elastic solids. ZAMM 87, 102–116 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freidin, A.B.: On chemical reaction fronts in nonlinear elastic solids, in: Indeitsev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVII International Summer School-Conference Advance Problems in Mechanics (APM 2009), Institute for Problems in Mechanical Engineering, St. Petersburg, pp. 231–237 (2009)

  9. Freidin A.B.: Mechanics of Fracture. Eshelby Problem. Polytechnic University Press, St. Petersburg (2010)

    Google Scholar 

  10. Freidin, A.: Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: ASME 2013 International Mechanical Engineering Congress and Exposition, Vol. 9: Mechanics of Solids, Structures and Fluids. San Diego, California, USA, Paper No. IMECE 2013–64957, V009T10A102 (2013)

  11. Freidin A.B., Vilchevskaya E.N., Korolev I.K.: Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci. 83, 57–75 (2014)

    Article  MathSciNet  Google Scholar 

  12. Freidin, A.: On a chemical affinity tensor for chemical reactions in deformable solids. Mech. Solids 50, 260–285 (2015)

  13. Gibbs J.: The Collected Works of J.W. Gibbs, Vol. 1: Thermodynamics. Yale University Press, Yale (1948)

    Google Scholar 

  14. Glansdorff P., Prigogine I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, London (1971)

    MATH  Google Scholar 

  15. Grinfeld M.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991)

    Google Scholar 

  16. Gusev E., Lu H., Gustafsson T., Garfunkel E.: Growth mechanism of thin silicon oxide films on Si(100) studied by medium-energy ion scattering. Phys. Rev. B 52, 1759–1775 (1995)

    Article  Google Scholar 

  17. Hopcroft M.A., Nix W.D., Kenny T.W.: What is the Young’s Modulus of Silicon?. J. Microelectromech. Syst. 19, 229 (2010)

    Article  Google Scholar 

  18. Jacobson N.S., Fox D.S., Opilab E.J.: High temperature oxidation of ceramic matrix composites. Pure Appl. Chem. 70, 493–500 (1998)

    Article  Google Scholar 

  19. Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional thermal oxidation of silicon-ii. modeling stress effect in wet oxides. IEEE Trans. Electron Devices ED-35 (1988) 25–37

  20. Kelly S., Clemens B.: Moving interface hydride formation in multilayered metal thin films. J. Appl. Phys. 108, 013521 (2010)

    Article  Google Scholar 

  21. Kikkinides E.: Design and optimization of hydrogen storage units using advanced solid materials: General mathematical framework and recent developments. Comput. Chem. Eng. 35, 1923–1936 (2011)

    Article  Google Scholar 

  22. Knyazeva A.G.: Cross effects in solid media with diffusion. J. Appl. Mech. Tech. Phys. 44, 373–384 (2003)

    Article  MathSciNet  Google Scholar 

  23. Krzeminski C., Han X.-L., Larrieu G.: Understanding of the retarder oxidation effects in silicon nanostructures. Appl. Phys. Lett. 100, 266311 (2012)

    Article  Google Scholar 

  24. Kublanov L.B., Freidin A.B.: Solid phase seeds in a deformable material. J. Appl. Math. Mech. (PMM USSR) 52, 382–389 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kunin I.A.: Elastic Media with Microstructure, vol. 2. Springer, Berlin (1983)

    Book  Google Scholar 

  26. Liu H.I., Biegelsen D.K., Ponce F.A., Johnson N.M., Pease R.F.W.: Selflimiting oxidation for fabricating sub5 nm silicon nanowires. Appl. Phys. Lett. 64, 1383–1385 (1994)

    Article  Google Scholar 

  27. Muhlstein C., Ritchie R.: High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface. Int. J. Fract. 119, 449–4745 (2003)

    Article  Google Scholar 

  28. Nanko M.: High-temperature oxidation of ceramic matrix composites dispersed with metallic particles. Sci. Technol. Adv. Mater. 6, 129–134 (2005)

    Article  Google Scholar 

  29. Okada R., Iijima S.: Oxidation property of silicon small particles. Appl. Phys. Lett. 58, 1662–1663 (1991)

    Article  Google Scholar 

  30. Prigogine I., Defay R.: Chemical Thermodynamics. Longmans, Green, London (1988)

    Google Scholar 

  31. Rafferty, C.: Stress effects in silicon oxidation-simulation and experiments. PhD dissertation, Tech. rep., Stanford University (1989)

  32. Rosencher E., Straboni A., Rigo S., Amsel G.: An 18O study of the thermal oxidation of silicon in oxygen. Appl. Phys. Lett. 34, 254–257 (1979)

    Article  Google Scholar 

  33. Rusanov A.I.: Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)

    Article  Google Scholar 

  34. Rusanov A.I.: Thermodynamic foundations of mechanochemistry. Saint-Petersburg, Nauka (2006)

    Google Scholar 

  35. Sutardja P., Oldham W.: Modeling of stress effects in silicon oxidation. IEEE Trans. Electron Devices 36, 2415–2421 (1989)

    Article  Google Scholar 

  36. Toribio, J., Kharin, V., Lorenzo, M., Vergara, D.: Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels. Corros. Sci. 10, 3346–3355 (2011)

  37. Trimaille I., Rigo S.: Use of 18O isotopic labeling to study the thermal dry oxidation of silicon as a function of temperature and pressure. Appl. Surf. Sci. 39, 65–80 (1989)

    Article  Google Scholar 

  38. Vilchevskaya, E.N., Freidin, A.B.: Modelling a chemical reaction front propagation in elastic solids: 1d case. In: Indeitsev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVI International Summer School-Conference Advance Problems in Mechanics (APM 2009), Institute for Problems in Mechanical Engineering, St. Petersburg, pp. 681–691 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vilchevskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidin, A., Morozov, N., Petrenko, S. et al. Chemical reactions in spherically symmetric problems of mechanochemistry. Acta Mech 227, 43–56 (2016). https://doi.org/10.1007/s00707-015-1423-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1423-2

Keywords

Navigation