Skip to main content
Log in

Effects of velocity slip on the inertialess instability of a contaminated two-layer film flow

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This manuscript provides a theoretical stability analysis for the configuration of two-layer immiscible flow down an inclined plane with velocity slip along the incline in the limit of zero Reynolds number. Surfactants may be present at the air–liquid interface, liquid–liquid interface, or both. In addition to an Orr–Sommerfeld analysis (again at zero Reynolds number), a long wavelength stability analysis is performed and the results are shown to be consistent. The interface mode, namely the mode of instability that arises because of viscosity stratification, is examined. Stability results (growth rates as a function of slip parameter and neutral stability boundaries) for various configurations of viscosity, surfactant placement, and layer thickness are compared with those of the previous literature and found to agree. It is found that velocity slip along the inclined plane reduces the maximum growth rate of instabilities in configurations where they occur, and the range of unstable wave numbers shrinks as well, indicating that slip has a promise for stabilization. This suggests that there is a possibility of using this favourably as a control option for two-layer flows in the absence or presence of surfactants, in relevant applications by designing the substrate to be a porous substrate with small permeability or a slippery substrate or a rough substrate or a hydrophobic substrate which can be modelled as substrates with velocity slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseenko S.V., Nakoryakov V.E., Pokusaev B.G.: Wave Flow in Liquid Films. Begell House, New York (1994)

    Google Scholar 

  2. Oron A., Davis S.H., Bankoff S.G.: Long scale evolution of thin films. Rev. Mod. Phys. 69, 931 (1997)

    Article  Google Scholar 

  3. Chang H.C., Demekhin E.A.: Complex Wave Dynamics on Thin Films. Elsevier, Amsterdam (2002)

    Google Scholar 

  4. Craster R.V., Matar O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131 (2009)

    Article  Google Scholar 

  5. Kao T.W.: Stability of two-layer viscous stratified flow down an inclined plane. Phys. Fluids 8, 812 (1965)

    Article  MathSciNet  Google Scholar 

  6. Kao T.W.: Role of the interface in the stability of stratified flow down an inclined plane. Phys. Fluids 8, 2190 (1965)

    Article  MathSciNet  Google Scholar 

  7. Kao T.W.: Role of viscosity stratification in the stability of two-layer flow down an incline. J. Fluid Mech. 33, 561 (1968)

    Article  Google Scholar 

  8. Weinstein S.J., Ruschak K.J.: Coating flows. Annu. Rev. Fluid Mech. 36, 29 (2004)

    Article  Google Scholar 

  9. Han C.D.: Multiphase Flow in Polymer Processing. Academic, New York (1981)

    Google Scholar 

  10. Joseph D.D., Renardy Y.: Fundamentals of Two-Fluid Dynamics Vol. I: Mathematical Theory and Applications. Vol. II Lubricated Transport, Drops and Miscible Liquids. Springer, New York (1992)

    Google Scholar 

  11. Loewenherz D.S., Lawrence C.J.: The effect of viscosity stratification on the stability of a free surface flow at low Reynolds number. Phys. Fluids A. 1, 1686 (1989)

    Article  Google Scholar 

  12. Yih C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321 (1963)

    Article  Google Scholar 

  13. Akhtaruzzaman A.F.M., Wang C.K., Lin S.P.: Wave motion in multilayered liquid films. J. Appl. Mech. 45, 25 (1978)

    Article  Google Scholar 

  14. Chen K.P.: Wave formation in the gravity-driven low-Reynolds of two liquid films down an inclined plane. Phys. Fluids 5, 3038 (1993)

    Article  Google Scholar 

  15. Gao P., Lu X.-Y.: Effect of surfactants on the inertialess instability of a two-layer film flow. J. Fluid Mech. 591, 495 (2007)

    MathSciNet  Google Scholar 

  16. Gao P., Lu X.-Y.: Mechanism of the long-wave inertialess instability of a two-layer film flow. J. Fluid Mech. 608, 379 (2008)

    MathSciNet  Google Scholar 

  17. Hu J., Millet S., Botton V., Hadid H.B., Henry D.: Inertialess temporal and spatio-temporal stability analysis of the two-layer film flow with density stratification. Phys. Fluids 18, 104101 (2006)

    Article  MathSciNet  Google Scholar 

  18. Jiang W.Y., Helenbrook B., Lin S.P., Weinstein S.J.: Low-Reynolds-number instabilities in three-layer flow down an inclined wall. J. Fluid Mech. 539, 387 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kliakhandler I.L.: Long interfacial waves in multilayer thin films and coupled Kuramoto-Sivashinsky equations. J. Fluid Mech. 391, 45 (1999)

    Article  MathSciNet  Google Scholar 

  20. Kliakhandler I.L., Sivashinsky G.I.: Viscous damping and instabilities in stratified liquid film flowing down a slightly inclined plane. Phys. Fluids 9, 23 (1997)

    Article  Google Scholar 

  21. Wang S.K., Seaborg J.J., Lin S.P.: Instability of multi-layered liquid films. Phys. Fluids 21, 1669 (1978)

    Article  Google Scholar 

  22. Weinstein S.J., Chen K.P.: Large growth rate instabilities in three-layer flow down an incline in the limit of zero Reynolds number. Phys. Fluids 11, 3270 (1999)

    Article  MathSciNet  Google Scholar 

  23. Weinstein S.J., Kurz M.R.: Long-wavelength instabilities in three-layer flow down an incline. Phys. Fluids A 3, 2680 (1991)

    Article  Google Scholar 

  24. Jiang W.Y., Helenbrook B., Lin S.P.: Inertialess instability of a two-layer liquid film flow. Phys. Fluids 16, 652 (2004)

    Article  MathSciNet  Google Scholar 

  25. Benjamin T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554 (1957)

    Article  MathSciNet  Google Scholar 

  26. Weinstein S.J.: Wave propagation in the flow of shear-thinning fluids down an incline. Am. Inst. Chem. Eng. J. 36, 1873 (1990)

    Article  Google Scholar 

  27. Denn M.M.: Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33, 265 (2001)

    Article  Google Scholar 

  28. Pascal J.P.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D Appl. Phys. D 32, 417 (1999)

    Article  Google Scholar 

  29. Pascal J.P.: Instability of power-law fluid flow down a porous incline. J. Non-Newton. Fluid Mech. 133, 109 (2006)

    Article  Google Scholar 

  30. Pascal J.P., D’Alessio S.J.D.: Instability in gravity-driven flow over uneven permeable surfaces. Int. J. Multiph. Flow 36, 449 (2010)

    Article  Google Scholar 

  31. Sadiq I.M.R., Usha R.: Thin Newtonian film flow down a porous inclined plane: stability analysis. Phys. Fluids 20, 022105 (2008)

    Article  Google Scholar 

  32. Sadiq I.M.R., Usha R., Joo S.W.: Instabilities in a liquid film flow over an inclined heated porous substrate. Chem. Eng. Sci. 65, 4443 (2010)

    Article  Google Scholar 

  33. Samanta A., Quil C.R., Goyeau B.: A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353 (2011)

    Article  MathSciNet  Google Scholar 

  34. Blake T.D.: Slip between a liquid and a solid: D. M. Tolstois (1952) theory reconsidered. Colloids Surf. 47, 135 (1990)

    Article  Google Scholar 

  35. Vinogradova O.I.: Drainage of a thin liquid film confined between hydrophobic surface. Langmuir 11, 2213 (1995)

    Article  Google Scholar 

  36. Vinogradova O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31 (1999)

    Article  Google Scholar 

  37. Voronov R.S., Papavassiliou D.V.: Review of a fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Eng. Chem. Res. 47, 2455 (2008)

    Article  Google Scholar 

  38. Wierschem A., Scholle M., Aksel N.: Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15, 426 (2003)

    Article  MathSciNet  Google Scholar 

  39. Scholle M., Wierschem A., Aksel N.: Creeping films with vortices over strongly undulated bottoms. Acta Mech. 168, 167 (2004)

    Article  Google Scholar 

  40. Wierschem A., Aksel N.: Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys. Fluids 16, 4566–4574 (2004)

    Article  Google Scholar 

  41. Rund A., Scholle M., Aksel N.: Drag reduction and improvement of material transport in creeping films. Arch. Appl. Mech. 75, 93 (2006)

    Article  Google Scholar 

  42. Scholle M., Haas A., Aksel N., Wilson M.C.T., Thompson H.M., Gaskell P.H.: Competing geometric and inertial effects on local flow structure in thick gravity-driven fluid films. Phys. Fluids 20, 123101 (2008)

    Article  Google Scholar 

  43. Smith, M.K.: The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217: 469 (1990). 20, 123101 (2008)

  44. Charru F., Hinch E.J.: ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195 (2000)

    Article  MathSciNet  Google Scholar 

  45. Mhetar V., Archer L.A.: Slip in entangled polymer melts. 1. General features. Macromolecules 31(24), 8607 (1998)

    Article  Google Scholar 

  46. Migler K.B., Hervert H., Leger L.: Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70(3), 287 (1993)

    Article  Google Scholar 

  47. Reiter G., Sharma A.: Auto-optimization of dewetting rates by rim instabilities in slipping polymer films. Phys. Rev. Lett. 87, 166103 (2001)

    Article  Google Scholar 

  48. Barrat J., Bocquet L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 4671 (1999)

    Article  Google Scholar 

  49. Priezjev N.J., Troian S.M.: Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92, 018302 (2004)

    Article  Google Scholar 

  50. Reiter G., Demirel A.L., Granick S.: From static to kinetic in confined liquid films. Science 263, 174 (1994)

    Article  Google Scholar 

  51. Sharma A., Kargupta K.: Instability and dynamics of thin slipping films. Appl. Phys. Lett. 83, 3549 (2003)

    Article  Google Scholar 

  52. Sharma A., Khanna R.: Nonlinear stability of microscopic polymer films with slippage. Macromolecules 29, 6959 (1996)

    Article  Google Scholar 

  53. Kargupta K., Sharma A., Khanna R.: Instability, morphology and dynamics of thin slipping films. Langmuir 20, 244 (2004)

    Article  Google Scholar 

  54. Ruckenstein E., Rajora P.: On the no-slip boundary condition of hydrodynamics. J. Colloid Interface Sci. 96, 488 (1983)

    Article  Google Scholar 

  55. Tretheway D.C., Meinhart C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9 (2002)

    Article  Google Scholar 

  56. Watanabe K., Udagawa H.: Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall. Am. Inst. Chem. Eng. 47, 256 (2001)

    Article  Google Scholar 

  57. Watanabe K., Yanuar , Mizunuma H.: Slip of Newtonian fluids at slid boundary. JSME Int. J. B 41, 525 (1998)

    Article  Google Scholar 

  58. Zhang, Y.L., Matar, O.K., Craster, R.V.: Analysis of tear film rupture: effect of non-Newtonian rheology. J. Colloid Interface Sci. 262, 130 (2003a)

  59. Min T., Kim J.: Effects of hydrophobic surface on stability and transition. Phys. Fluids 17, 108106 (2005)

    Article  Google Scholar 

  60. Bruna M., Brewardi C.J.W.: The influence of non-polar lipids on tear film dynamics. J. Fluid Mech. 746, 565 (2014)

    Article  Google Scholar 

  61. Sharma A., Khanna R., Reiter G.: A thin film analog of the corneal mucus layer of the tear film: an enigmatic long range non-classical DLVO interaction in the breakup of thin polymer films. Colloids Surf. B Biointerfaces 14, 223 (1999)

    Article  Google Scholar 

  62. Braun R.J., Fitt A.D.: Modelling drainage of the precorneal tear film after a blink. Math. Med. Biol. 20, 1 (2003)

    Article  Google Scholar 

  63. Criminale W.O., Jackson T.L., Joslin R.D.: Theory and Computation of Hydrodynamic Stability. Cambridge University Press, UK (2003)

    Book  Google Scholar 

  64. Blyth M.G., Pozrikidis C.: Effect of surfactant on the stability of film flow down an inclined plane. J. Fluid Mech. 521, 241 (2004)

    Article  MathSciNet  Google Scholar 

  65. Pollak T., Aksel N.: Crucial flow stabilization and multiple instability branches of gravity-driven films over topography. Phys. Fluids 25, 024103 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjalaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjalaiah, Usha, R. Effects of velocity slip on the inertialess instability of a contaminated two-layer film flow. Acta Mech 226, 3111–3132 (2015). https://doi.org/10.1007/s00707-015-1364-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1364-9

Keywords

Navigation