Skip to main content
Log in

Nonlinear vibration of coupled nano- and microstructures conveying fluid based on Timoshenko beam model under two-dimensional magnetic field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nonlinear vibration response of coupled viscoelastic carbon nanotubes (CNTs) conveying viscous fluid is investigated based on nonlocal and modified couple stress theories. The CNTs are placed in a uniform two-dimensional (2D) magnetic field and modeled by a Timoshenko beam. The effect of slip boundary condition is considered in the Navier–Stokes relations based on the Knudsen number correction factor. The higher-order governing equations of motion are derived based on the energy method and Hamilton’s principle where the differential quadrature (DQ) approach is applied to obtain the nonlinear frequency of coupled system. A detailed parametric study is conducted, focusing on the combined effects of 2D magnetic field, Visco-Pasternak foundation, Knudsen number, surface effect, velocity of conveying viscous fluid, and different theories. Also, the Galerkin method is applied to compare our linear results to those that are obtained by the DQ approach. The results of this article could be useful in designing and manufacturing of double nano-/micromechanical systems that are usually used in advanced biomechanics and optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Chang W.J., Lee H.L.: Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model. Phys. Lett. A. 373, 982–985 (2009)

    Article  MATH  Google Scholar 

  3. Reddy, J.N., Wang, C.M.: Dynamics of Fluid-Conveying Beams. Centre for Offshore Research and Engineering, National University of Singapore, CORE Report 2004-03, pp. 1–21 (2004)

  4. Ghorbanpour Arani A., Shajari A.R., Amir S., Loghman A.: Electro-thermo-mechanical nonlinear nonlocal vibration and instability of embedded micro-tube reinforced by BNNT, conveying fluid. Phys. E. 45, 109–121 (2012)

    Article  Google Scholar 

  5. Quan Q., Deotare P.B., Loncar M.: Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl. Phys. Lett. 96, 203102 (2010)

    Article  Google Scholar 

  6. Deotare P.B., Mccutcheon M.W., Frank I.W., Khan M., Lonar M.: Coupled photonic crystal nanobeam cavities coupled photonic crystal nanobeam cavities. Appl. Phys. Lett. 95, 031102 (2009)

    Article  Google Scholar 

  7. Ivinskaya, A.M., Lavrinenko, A.V., Sukhorukov, A.A., Shyroki, D.M.: Single and Coupled Nanobeam Cavities. INTECH Open Access Publisher (2013)

  8. Lim H.-J., Lee C.-M., Ahn B.-H., Lee Y.-H.: Dual-rail nanobeam microfiber-coupled resonator. Opt. Express 21, 6724–6732 (2013)

    Article  Google Scholar 

  9. Lepert, G.: Integrated Optics for Coupled-Cavity Quantum Electrodynamics, PhD Dissertation. Imperial College London (2013)

  10. Renaut C., Cluzel B., Dellinger J., Lalouat L., Picard E., Peyrade D., Hadji E., Fornel F.D.: On chip shapeable optical tweezers. Sci. Rep. 3, 2290 (2013)

    Article  Google Scholar 

  11. Murmu T., Adhikari S.: Nonlocal effects in the longitudinal vibration of double-nanorod systems. Phys. E. 43, 415–422 (2010)

    Article  Google Scholar 

  12. Murmu T., McCarthy M.A., Adhikari S.: Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: a nonlocal elasticity approach. J. Sound Vib. 331, 5069–5086 (2012)

    Article  Google Scholar 

  13. Kiani K.: Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field. J. Phys. Chem. Solids 75, 15–22 (2014)

    Article  Google Scholar 

  14. Ghorbanpour Arani A., Amir S.: Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fluid embedded on elastic foundation via strain gradient theory. Phys. B Phys. Condens. Matter 419, 1–6 (2013)

    Article  Google Scholar 

  15. Kaviani F., Mirdamadi H.R.: Influence of Knudsen number on fluid viscosity for analysis of divergence in fluid conveying nano-tubes. Comput. Mater. Sci. 61, 270–277 (2012)

    Article  Google Scholar 

  16. Mirramezani M., Mirdamadi H.R., Ghayour M.: Nonlocal vibrations of shell-type CNT conveying simultaneous internal and external flows by considering slip condition. Comput. Methods Appl. Mech. Eng. 272, 100–120 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gurtin M.E., Murdoch A.I.A.N.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghorbanpour Arani A., Roudbari M.: Nonlocal piezoelastic surface effect on the vibration of visco-Pasternak coupled boron nitride nanotube system under a moving nanoparticle. Thin Solid Films 542, 232–241 (2013)

    Article  Google Scholar 

  19. Ghorbanpour Arani A., Amir S., Dashti P., Yousefi M.: Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect. Comput. Mater. Sci. 86, 144–154 (2014)

    Article  Google Scholar 

  20. Lai W.M., Rubin D.H., Rubin D., Krempl E.: Introduction to Continuum Mechanics. Butterworth-Heinemann, Cambridge (2009)

    Google Scholar 

  21. Ghorbanpour Arani A., Atabakhshian V., Loghman A., Shajari A.R., Amir S.: Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method. Phys. B Condens. Matter 407, 2549–2555 (2012)

    Article  Google Scholar 

  22. Lu P., He L.H., Lee H.P., Lu C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    Article  MATH  Google Scholar 

  23. Ansari R., Mohammadi V., Faghih Shojaei M., Gholami R., Rouhi H.: Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory. Eur. J. Mech. A Solids 45, 143–152 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lei Y., Adhikari S., Friswell M.I.: Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66–67, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ghorbanpour Arani A., Shokravi M., Amir S., Mozdianfard M.R.: Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs. J. Mech. Sci. Technol. 26, 1455–1462 (2012)

    Article  Google Scholar 

  26. Khodami Maraghi Z., Ghorbanpour Arani A., Kolahchi R., Amir S., Bagheri M.R.: Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Compos. Part B. 45, 423–432 (2013)

    Article  Google Scholar 

  27. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  28. Asghari M., Kahrobaiyan M.H., Ahmadian M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Eringen A.C., Edelen D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  30. Eringen A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)

    Article  MATH  Google Scholar 

  31. Aghababaei R., Reddy J.N.: Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates. J. Sound Vib. 326, 277–289 (2009)

    Article  Google Scholar 

  32. Bellman R., Kashef B., Casti J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Bellman R., Casti J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34, 235–238 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  34. Civalek Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Article  Google Scholar 

  35. Chen W., Zhong T.: The study on the nonlinear computations of the DQ and DC methods. Numer. Methods Partial Differ. Equ. 13, 57–75 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang L.: Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Phys. E. 41, 1835–1840 (2009)

    Article  Google Scholar 

  37. Murmu T., Adhikari S.: Nonlocal transverse vibration of double-nanobeam-systems. J. Appl. Phys. 108, 083514 (2010)

    Article  Google Scholar 

  38. Wang L., Ni Q., Li M., Qian Q.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Phys. E. 40, 3179–3182 (2008)

    Article  Google Scholar 

  39. Ghavanloo E., Fazelzadeh S.A.: Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Phys. E. 44, 17–24 (2011)

    Article  Google Scholar 

  40. Xia W., Wang L.: Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluidics Nanofluidics 9, 955–962 (2010)

    Article  Google Scholar 

  41. Yang J., Ke L.L., Kitipornchai S.: Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys. E. 42, 1727–1735 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghorbanpour Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanpour Arani, A., Dashti, P., Amir, S. et al. Nonlinear vibration of coupled nano- and microstructures conveying fluid based on Timoshenko beam model under two-dimensional magnetic field. Acta Mech 226, 2729–2760 (2015). https://doi.org/10.1007/s00707-015-1342-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1342-2

Keywords

Navigation