Skip to main content
Log in

Stochastic natural frequency of composite conical shells

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present study portrays the stochastic natural frequencies of laminated composite conical shells using a surrogate model (D-optimal design) approach. The rotary inertia and transverse shear deformation are incorporated in probabilistic finite element analysis with uncertainty due to variation in angle of twist. A sensitivity analysis is carried out to address the influence of different input parameters on the output natural frequencies. Typical fiber orientation angle and material properties are randomly varied to obtain the stochastic natural frequencies. The sampling size and computational cost are exorbitantly reduced by employing the present approach compared to direct Monte Carlo simulation. Statistical analysis is presented to illustrate the results. The stochastic natural frequencies obtained are the first known results for the type of analyses carried out here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell T.J.: An algorithm for the construction of D-optimal experimental designs. Technometrics 16(2), 203–210 (1974)

    MATH  MathSciNet  Google Scholar 

  2. Michael J.B., Norman R.D.: On minimum-point second-order designs. Technometrics 16(4), 613–616 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Craig, J.A.: D-Optimal Design Method: Final Report and User’s Manual. USAF Contract F33615-78-C-3011, FZM-6777, General Dynamics. Forth Worth Div. (1978)

  4. Montgomery D.C.: Design and Analysis of Experiments. Wiley, New Jersey (1991)

    MATH  Google Scholar 

  5. Unal R., Stanley D.O., Lepsch R.A.: Parametric modeling using saturated experimental designs. J. Parametr. XVI(1), 3–18 (1996)

    Google Scholar 

  6. Giunta, A.A, Balabanov, V., Haim, D., Grossman, B., Mason, W.H., Watson, L.T.: Wing design for high-speed civil transport using DOE methodology, USAF/NASA/ ISSMO Symposium, AIAA Paper 96-4001 (1996)

  7. Radoslav H.: Multiplicative methods for computing D-optimal stratified designs of experiments. J. Stat. Plan. Inference 146, 82–94 (2014)

    Article  MATH  Google Scholar 

  8. Goyal V.K., Kapania R.K.: Dynamic stability of uncertain laminated beams subjected to subtangential loads. Int. J. Solids Struct. 45(10), 2799–2817 (2008)

    Article  MATH  Google Scholar 

  9. Shaker A., Abdelrahman W.G., Tawfik M., Sadek E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41, 495–501 (2008)

    Article  Google Scholar 

  10. Fang C., Springer G.S.: Design of composite laminates by a Monte Carlo method. Compos. Mater. 27(7), 721–753 (1993)

    Article  Google Scholar 

  11. Sasikumar P., Suresh R., Gupta S.: Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities. Acta Mech. 225, 1503–1522 (2014)

    Article  MATH  Google Scholar 

  12. Ankenmann B., Nelson B.L., Staum J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  MathSciNet  Google Scholar 

  13. Park J.S., Kim C.G., Hong C.S.: Stochastic finite element method for laminated composite structures. J. Reinf. Plast. Compos. 14(7), 675–693 (1995)

    Google Scholar 

  14. Ganesan R., Kowda V.K.: Free vibration of composite beam-columns with stochastic material and geometric properties subjected to random axial loads. J. Reinf. Plast. Compos. 24(1), 69–91 (2005)

    Article  Google Scholar 

  15. Yue R.-X., Liu X., Chatterjee K.: D-optimal designs for multi-response linear models with a qualitative factor. J. Multivar. Anal. 124, 57–69 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Choi H., Kang M.: Optimal sampling frequency for high frequency data using a finite mixture model. J. Korean Stat. Soc. 43(2), 251–262 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu M., Qiu Z., Wang X.: Uncertainty propagation in SEA for structural—acoustic coupled systems with non-deterministic parameters. J. Sound Vib. 333(17), 3949–3965 (2014)

    Article  Google Scholar 

  18. Kuttenkeuler J.: A finite element based modal method for determination of plate stiffnesses considering uncertainties. J. Compos. Mater. 33(8), 695–711 (1999)

    Article  Google Scholar 

  19. Ghanem R.G., Spanos P.D.: Stochastic Finite Elements—A Spectral Approach. Revised. Dover Publications Inc., NY (2002)

    Google Scholar 

  20. Kishor D.K., Ganguli R., Gopalakrishnan S.: Uncertainty analysis of vibrational frequencies of an incompressible liquid in a rectangular tank with and without a baffle using polynomial chaos expansion. Acta Mech. 220(1-4), 257–273 (2011)

    Article  MATH  Google Scholar 

  21. Shaker A., Abdelrahman W.G., Tawfik M., Sadek E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41(4), 493–501 (2008)

    Article  MATH  Google Scholar 

  22. Dey S., Mukhopadhyay T., Adhikari S.: Stochastic free vibration analysis of angle-ply composite plates–a RS-HDMR approach. Compos. Struct. 122, 526–536 (2015)

    Article  Google Scholar 

  23. Dey S., Mukhopadhyay T., Adhikari S.: Stochastic free vibration analyses of composite doubly curved shells—A Kriging model approach. Compos. Part B Eng. 70, 99–112 (2015)

    Article  Google Scholar 

  24. Dey S., Karmakar A.: Finite element analyses of bending stiff composite conical shells with multiple delamination. J. Mech. Mater. Struct. 7(2), 213–224 (2012)

    Article  Google Scholar 

  25. Liew K.M., Lim C.M., Ong L.S.: Vibration of pretwisted cantilever shallow conical shells. I. J. Solids Struct. 31, 2463–2474 (1994)

    Article  MATH  Google Scholar 

  26. Jones R.M.: Mechanics of Composite Materials. McGraw-Hill Book Co., NY (1975)

    Google Scholar 

  27. Cook R.D., Malkus D.S., Plesha M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)

    MATH  Google Scholar 

  28. Meirovitch L.: Dynamics and Control of Structures. Wiley, New York (1992)

    Google Scholar 

  29. Karmakar A., Sinha P.K.: Failure analysis of laminated composite pretwisted rotating plates. J. Reinf. Plast. Compos. 20, 1326–1357 (2001)

    Article  Google Scholar 

  30. Bathe K.J.: Finite Element Procedures in Engineering Analysis. PHI, New Delhi (1990)

    Google Scholar 

  31. Carpenter, W.C.: Effect of design selection on response surface performance. NASA Contractor Report 4520 (1993)

  32. Mukhopadhyay, T., Dey, T.K., Dey, S., Chakrabarti, A.: Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct. Eng. Int. IABSE. 24(2), (2015). doi:10.2749/101686614X14043795570778

  33. Giunta, A.A., Wojtkiewicz, S.F., Eldred, M.S.: Overview of modern design of experiments methods for computational simulations. In: Proceedings of the 41st American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, Paper AIAA 2003–0649 Reno, NV (2003)

  34. Santner T.J., Williams B., Notz W.: The Design and Analysis of Computer Experiments. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  35. Koehler J.R., Owen A.B.: Computer experiments. In: Ghosh, S., Rao, C.R. (eds.) Handbook of Statistics, vol.13, pp. 261–308. Elsevier Science B.V., Amsterdam (1996)

    Google Scholar 

  36. Koziel, S., Yang, X.-S. (eds.) Computational Optimization, Methods and Algorithms. Springer, Berlin, ISBN: 978-3-642-20858-4, (Print) 978-3-642-20859-1

  37. Jin R., Chen W., Simpson T.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)

    Article  Google Scholar 

  38. Kim B.S., Lee Y.B., Choi D.H.: Comparison study on the accuracy of metamodeling technique for non-convex functions. J. Mech. Sci. Techn. 23(4), 1175–1181 (2009)

    Article  MathSciNet  Google Scholar 

  39. Mukhopadhyay, T., Dey, T.K., Chowdhury, R., Chakrabarti, A.: Structural damage identification using response surface-based multi-objective optimization: A comparative study. Arab. J. Sci. Eng. (2015). doi:10.1007/s13369-015-1591-3

  40. Qatu M.S., Leissa A.W.: Natural frequencies for cantilevered doubly-curved laminated composite shallow shells. Compos. Struct. 17, 227–255 (1991)

    Article  Google Scholar 

  41. Qatu M.S., Leissa A.W.: Vibration studies for laminated composite twisted cantilever plates. Int. J. Mech. Sci. 33(11), 927–940 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Mukhopadhyay, T., Khodaparast, H.H. et al. Stochastic natural frequency of composite conical shells. Acta Mech 226, 2537–2553 (2015). https://doi.org/10.1007/s00707-015-1316-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1316-4

Keywords

Navigation