Skip to main content
Log in

Global interpolating MLS shape functions for structural problems with discrete nodal essential boundary conditions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The moving least squares (MLS)-based element-free Galerkin method (EFGM) has been widely studied, yielding valuable results and becoming a robust mesh-free technique for structural analysis. Due to the non-interpolating nature of MLS shape functions, the EFGM procedure leads to stiffness and mass matrices based on nodal parameters instead of true nodal displacements. The interpolating moving least squares (IMLS) methods with singular weight functions or the weighted nodal least squares (WNLS) methods were proposed in order to arrange the formulation in terms of actual displacements at the nodes. In this work, a later transformation matrix to retrieve the classic stiffness and mass matrices is discussed and numerically tested in problems with discrete prescribed displacements at boundaries, for which a straightforward finite element method (FEM)-type imposition of boundary conditions is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lancaster P., Salkauskas K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhu T., Atluri S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fernández-Méndez S., Huerta A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 37(12), 1257–1275 (2004)

    Article  Google Scholar 

  5. Liu G.R.: Mesh Free Methods. Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  6. Kaljevic I., Saigal S.: An improved element free Galerkin formulation. Int. J. Numer. Methods Eng. 40(16), 2953–2974 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen J.-S., Wang H.-P.: New boundary condition treatments in meshfree computation of contact problems. Comput. Methods Appl. Mech. Eng. 187, 441–468 (2000)

    Article  MATH  Google Scholar 

  8. Ren H., Cheng Y.: The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems. Int. J. Appl. Mech. 3(4), 735–758 (2011)

    Article  Google Scholar 

  9. Ren H., Cheng Y.: The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng. Anal. Bound. Elem. 36(5), 873–880 (2012)

    Article  MathSciNet  Google Scholar 

  10. Most, T., Bucher, C., Macke, M.: A natural neighbor based moving least squares approach with interpolating weighting function. In: Gürlebeck, K., Könke, C. (eds.) 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, pp. 12–14. Weimar, Germany (2006)

  11. Most T., Bucher C.: New concepts for moving least squares: an interpolating non-singular weighting function and weighted nodal least squares. Eng. Anal. Bound. Elem. 32, 461–470 (2008)

    Article  MATH  Google Scholar 

  12. Chen J.-S., Pan C., Wu C.-T., Liu W.K.: Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139, 195–227 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen J.-S., Pan C., Wu C.-T.: Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech. 19, 211–227 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wagner G.J., Liu W.K.: Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int. J. Numer. Meth. Eng. 47(8), 1367–1379 (2000)

    Article  MATH  Google Scholar 

  15. Dolbow J., Belytschko T.: An introduction to programming the meshless element free Galerkin method. Arch. Comput. Methods Eng. 5(3), 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  16. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139(1–4), 3–47 (1996)

    Article  MATH  Google Scholar 

  17. Liu G.R., Gu Y.T.: An Introduction to Meshfree Methods and Their Programming. Springer, Berlin (2005)

    Google Scholar 

  18. Valencia, Ó.F., Gómez-Escalonilla, F.J., López, J.: Influence of selectable parameters in EFGM. 1d bar axially loaded problem. Proceedings IMechE, Part C: J. Mech. Eng. Sci. 222(11), 1621–1633 (2008)

  19. Tiago, C.M., Leitão, V.M.: Analysis of free vibration problems with the element-free Galerkin method. In: 11th International Conference on Numerical Methods in Continuum Mechanics, Žilina, Slovak Republic (2003)

  20. Valencia, Ó.F., Gómez-Escalonilla, F.J., Garijo, D., Díez, J.L.: Bernstein polynomials in EFGM. Proceedings IMechE, Part C: J. Mech. Eng. Sci. 225(8), 1808–1815 (2011)

  21. Timoshenko S.: Vibration Problems in Engineering, 2nd edn. D. Van Nostrand Company, Inc., New York (1973)

    Google Scholar 

  22. Timoshenko S., Goodier J.N.: Theory of Elasticity. McGraw Hill, New York (1951)

    MATH  Google Scholar 

  23. Timoshenko S.: Strength of Materials, Part I: Elementary Theory and Problems, 2nd edn. D. Van Nostrand Company, Inc., New York (1940)

    Google Scholar 

  24. Wang Y.H., Li W.D., Tham L.G., Lee P.K.K., Yue Z.Q.: Parametric study for an efficient meshless method in vibration analysis. J. Sound Vib. 255(2), 261–279 (2002)

    Article  Google Scholar 

  25. Paz M.: Structural Dynamics, Theory and Computation, 3rd edn. Van Nostrand Reinhold Company, Inc., New York (1991)

    Book  Google Scholar 

  26. Rao B.N., Rahman S.: A coupled meshless-finite element method for fracture analysis of cracks. Int. J. Press. Vessels Pip. 78, 647–657 (2001)

    Article  Google Scholar 

  27. Rice J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. ASME 35, 379–386 (1968)

    Article  Google Scholar 

  28. de Lorenzi H.G.: On the energy release rate and the J-integral for 3-D crack configurations. Int. J. Fract. 19(3), 183–193 (1982)

    Article  Google Scholar 

  29. Anderson T.L.: Fracture Mechanics Fundamentals and Applications, 2nd edn. CRC Press LLC, Boca Raton (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Garijo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garijo, D., Valencia, Ó.F. & Gómez-Escalonilla, F.J. Global interpolating MLS shape functions for structural problems with discrete nodal essential boundary conditions. Acta Mech 226, 2255–2276 (2015). https://doi.org/10.1007/s00707-015-1300-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1300-z

Mathematics Subject Classification

Navigation