Skip to main content
Log in

Combined effect of pressure and geometric imperfection on buckling of stressed thin films on substrates

  • Note
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the combined effect of pressure and geometric imperfection on buckling of stressed thin films on a semi-infinite rigid substrate. Analytical approximate solutions are proposed by using the total potential energy of the system and the Rayleigh–Ritz’s method, and their stabilities are also determined. The present analytical approximate solutions agree very well with the numerical solutions obtained via the improved shooting method. The effect of pressure mismatch together with imperfection on the critical stress (above which the film buckles) and on the film-center deflection is characterized. It is found that, compared with the classical case of the Euler column buckling, the equilibrium solutions and critical stress of the film are strongly dependent on the linear combination of the pressure mismatch and imperfection amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Sharon E., Roman B., Marder M., Shin G.S., Swinney H.L.: Mechanics: buckling cascades in free sheets. Nature 419, 579 (2002)

    Article  Google Scholar 

  2. Cerda E., Ravi-Chandar K., Mahadevan L.: Thin films: wrinkling of an elastic sheet under tension. Nature 419, 579–580 (2002)

    Article  Google Scholar 

  3. Zehetner C., Irschik H.: On the static and dynamic stability of beams with an axial piezoelectric actuation. Smart Struct. Syst. 4(1), 67–84 (2008)

    Article  Google Scholar 

  4. Sultan E., Boudaoud A.: The buckling of a swollen thin gel layer bound to a compliant substrate. J. Appl. Mech.-Trans. ASME 75, 051002 (2008)

    Article  Google Scholar 

  5. Torabi H., Shariati M., Sedaghat E., Zadeh A.L.: Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48, 1959–1974 (2013)

    Article  MATH  Google Scholar 

  6. Humer A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224(7), 1493–1525 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fu Y., Wang J., Hu S.: Analytical solutions of thermal buckling and postbuckling of symmetric laminated composite beams with various boundary conditions. Acta Mech. 225(1), 13–29 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Audoly B.: Stability of straight delamination blisters. Phys. Rev. Lett. 83, 4124–4127 (1999)

    Article  Google Scholar 

  9. Moon M.W., Jensen H.M., Hutchinson J.W., Oh K.H., Evans A.G.: The characterization of telephone cord buckling of compressed thin films on substrates. J. Mech. Phys. Solids 50, 2355–2377 (2002)

    Article  Google Scholar 

  10. Moon M.W., Lee K.R., Oh K.H., Hutchinson J.W.: Buckle delamination on patterned substrates. Acta Mater. 52, 3151–3159 (2004)

    Article  Google Scholar 

  11. Jagla E.A.: Modeling the buckling and delamination of thin films. Phys. Rev. B 75, 085405 (2007)

    Article  Google Scholar 

  12. Wu X.F., Dzenis Y.A., Strabala K.W.: Wrinkling of a charged elastic film on a viscous layer. Meccanica 42, 273–282 (2007)

    Article  MATH  Google Scholar 

  13. Hutchinson J.W., Suo Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1992)

    Article  MATH  Google Scholar 

  14. Foucher F., Coupeau C., Colin J., Cimetière A., Grilhé J.: How does crystalline substrate plasticity modify thin film buckling?. Phys. Rev. Lett. 97, 096101 (2006)

    Article  Google Scholar 

  15. Colin J., Coupeau C., Grilhé J.: Plastic folding of buckling structures. Phys. Rev. Lett. 99(4), 046101 (2007)

    Article  Google Scholar 

  16. Ziebart V., Paul O., Munch U., Schwizer J., Baltes H.: Mechanical properties of thin films from the load deflection of long clamped plates. J. Microelectromech. Syst. 7, 320–328 (1998)

    Article  Google Scholar 

  17. Rubel M.: Structure materials in fusion reactors: issues related to tritium, radioactivity and radiation-induced effects. Fusion Sci. Technol. 53(2), 459–467 (2008)

    MathSciNet  Google Scholar 

  18. Parry G., Colin J., Coupeau C., Foucher F., Cimetière A., Grilhé J.: Effect of substrate compliance on the global unilateral post-buckling of coatings: AFM observations and finite element calculations. Acta Mater. 53, 441–447 (2005)

    Article  Google Scholar 

  19. Parry G., Cimetière A., Coupeau C., Colin J., Grilhé J.: Stability diagram of unilateral buckling patterns of strip-delaminated films. Phys. Rev. E 74, 066601 (2006)

    Article  Google Scholar 

  20. Dion E., Grilhé J., Colin J., Coupeau C.: Buckling of stressed and pressurized thin films on substrates. J. Appl. Mech.-Trans. ASME 77, 041012 (2010)

    Article  Google Scholar 

  21. Iooss G., Joseph D.D.: Elementary Stability and Bifurcation Theory. Springer, New York (1980)

    Book  MATH  Google Scholar 

  22. Fang W., Wickert J.A.: Post buckling of micromachined beams. J. Micromech. Microeng. 4, 116–122 (1994)

    Article  Google Scholar 

  23. Wu B.S.: Direct calculation of buckling strength of imperfect structures. Int. J. Solids Struct. 37(11), 1561–1576 (2000)

    Article  MATH  Google Scholar 

  24. Hutchinson J.W., He M.Y., Evans A.G.: The influence of imperfections on the nucleation and propagation of buckling driven delaminations. J. Mech. Phys. Solids 48, 709–734 (2000)

    Article  MATH  Google Scholar 

  25. Akgöz B., Civalek Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang J., Wang C.Y., Chen W.: Surface and piezoelectric effects on the buckling of piezoelectric nanofilms due to mechanical loads. Meccanica 49, 181–189 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wu B.S., Yu Y.P.: A simplified analysis on buckling of stressed and pressurized thin films on substrates. Arch. Appl. Mech. 84(2), 149–157 (2014)

    Article  MATH  Google Scholar 

  28. Yu Y.P., Wu B.S., Lim C.W.: Numerical and analytical approximations to large post-buckling deformation of MEMS. Int. J. Mech. Sci. 55, 95–103 (2012)

    Article  Google Scholar 

  29. Shames I.H., Dym C.L.: Energy and Finite Element Methods in Structural Mechanics. Hemisphere Publishing, New York (1985)

    MATH  Google Scholar 

  30. Coupeau C., Grilhé J., Dion E.,de Morais L.D., Colin J.: Evidence of vacuum between buckled films and their substrates. Thin Solid Films 518, 5233–5236 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wu, B. & Yu, Y. Combined effect of pressure and geometric imperfection on buckling of stressed thin films on substrates. Acta Mech 226, 1647–1655 (2015). https://doi.org/10.1007/s00707-014-1254-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1254-6

Keywords

Navigation