Skip to main content
Log in

Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, nonlinear free vibration and primary/secondary resonance analyses of shape memory alloy (SMA) fiber reinforced hybrid composite beams with symmetric and asymmetric lay-up are investigated. The simplified Brinson constitutive model and cosine phase transformation kinetics are utilized to simulate the behavior of the SMA materials and calculate the recovery stress. In order to predict the behavior of the smart laminated beam, Euler–Bernoulli beam theory and nonlinear von-Kármán strain field are employed. Two types of micromechanical models, namely Voigt and Reuss models are considered. The Galerkin procedure together with the elliptic function and multi timescales method is adopted to obtain analytical solutions for the nonlinear free vibration and primary/secondary response phenomena. Numerical results reveal that some of the geometrical and physical parameters such as the SMA volume fraction, the amount of prestrain in the SMA fiber, orientation of composite fiber, vibration amplitude and temperature are important factors affecting the free vibration characteristic in the pre/post-buckled region, and primary and secondary resonance of the laminated beams reinforced with SMA fibers. The analytical solutions and results are reported for the first time and can serve as benchmark for researchers to validate their numerical and analytical methods in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Central amplitude of the beam

A 11 :

Extensional stiffness coefficient

b :

Width of the composite beam

B 11 :

Extension-bending coupling coefficient

D 11 :

Bending stiffness coefficient

E 11 :

Young’s modulus in 1 direction

E 22 :

Young’s modulus in 2 direction

E s :

Young’s modulus of SMA fiber

E m :

Young’s modulus of matrix

F :

Amplitude of excitation

G 12 :

Modulus of rigidity

G s :

Modulus of rigidity of SMA fiber

G m :

Modulus of rigidity of matrix

h :

Total thickness of the beam

I :

Area moment of inertia

k :

ith Layer, starting from the bottom

K :

Kinetic energy

L :

Length of the beam

m :

Cosine of the ply angle

M :

Moment resultant

n :

Sine of the ply angle

N :

Force resultant

\({\overline{Q}_{ij}}\) :

Reduced stiffness matrix

T :

Temperature

T 0 :

Reference temperature

t :

Time

\({\tilde{t}_0}\) :

Fast timescale

t 1 :

Slow timescale

u :

Axial displacement

U :

Strain energy

V m :

Volume fraction of the matrix

V s :

Volume fraction of the SMA fiber

w :

Lateral displacement

x, z :

Beam coordinates in the x, z directions

ε x :

Axial strain

κ :

Curvature

ω L :

Linear fundamental frequency

ω NL :

Nonlinear fundamental frequency

λ :

Detuning parameter

ψ :

Frequency of excitation

\({\Delta T_{\rm Cr}}\) :

Critical buckling temperature difference

υ 12 :

Poisson’s ratio

ρ :

Density of composite beam

α s :

Thermal expansion coefficient of the SMA

α m :

Thermal expansion coefficient of the matrix

ξ :

Total martensite volume fraction

ξ S :

Stress induced martensite volume fraction

ξ S0 :

Initial Stress induced martensite volume fraction

ξ T :

Temperature induced martensite volume fraction

ξ T0 :

Initial Temperature induced martensite volume fraction

Θ :

Thermal coefficient of expansion

E M :

Martensite Young’s modulus

E A :

Austenite Young’s modulus

ε L :

Maximum residual strain

ε 0 :

Prestrain

A s :

Austenite start temperature

A f :

Austenite finish temperature

C A :

Stress influence coefficient

σ r :

Recovery stress obtained through SMA activion

References

  1. Lagoudas D.C.: Shape memory alloys: modeling and engineering applications. Springer, New York (2007)

    Google Scholar 

  2. Vincenzini, P.: Complete set of CONGRESS of CIMTEC 2012, Volumes 77–86 of Advances in Science and Technology Series. Trans Tech Publications Ltd, Bahman (2013)

  3. Rogers, C.A., Robertshaw, H.H.: Shape memory alloy reinforced composite. Eng. Sci. Preprints. ESP25 88027, pp. 20–22 (1988)

  4. Ben Jaber, M., Smaoui, H., Terriault, P.: Finite element analysis of a shape memory alloy three-dimensional beam based on a finite strain description. Smart Mater. Struct. 17 (2008) 045005 (11 pp)

  5. Lagoudas D.C., Entchev P.B., Popov P., Patoor E., Brinson L.C., Gao X.: Shape memory alloys, Part II: modeling of polycrystals. Mech. Mat. 38, 430–462 (2006)

    Article  Google Scholar 

  6. Soul H., Yawny A., Carlos F.C., Lovey Torra V.: Thermal effects in a mechanical model for pseudoelastic behavior of NiTi wires. Mater. Res. 10, 387–394 (2007)

    Article  Google Scholar 

  7. Paradis A., Terriault P., Brailovski V.: Modeling of residual strain accumulation of NiTi shape memory alloys under uniaxial cyclic loading. Comput. Mater. Sci. 47, 373–383 (2009)

    Article  Google Scholar 

  8. Volkov, A.E., Emelyanova E.V., Evard M.E., Volkova N.A.: An explanation of phase deformation tension—compression asymmetry of TiNi by means of microstructural modeling. J. Alloys Compd. (2012). doi: 10.1016/j.jallcom.2012.05.131

  9. Torra V., Isalgue A., Martorell F., Terriault P., Lovey F.C.: Built in dampers for family homes via SMA: an ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Eng. Struct. 29, 1889–1902 (2007)

    Article  Google Scholar 

  10. Casciati F., Faravelli L., Fuggini C.: Cable vibration mitigation by added SMA wires. Acta Mech. 195, 141–155 (2008)

    Article  MATH  Google Scholar 

  11. Casciati F., Faravelli L., Al Saleh R.: An SMA passive device proposed within the highway bridge benchmark. Struct. Control Health Monit. 16, 657–667 (2009)

    Article  Google Scholar 

  12. Roha H., Reinhorn A.M.: Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars. Eng. Struct. 32, 3394–3403 (2010)

    Article  Google Scholar 

  13. Torra V., Carreras G., Casciati S., Terriault P.: On the NiTi wires in dampers for stayed cables. Smart Struct. Syst. 13, 353–374 (2014)

    Article  Google Scholar 

  14. Roh J.H., Oh I.K., Yang S.M., Han J.H., Lee I.: Thermal post-buckling analysis of shape memory alloy hybrid composite shell panels. Smart Mater. Struct. 13, 1337–1344 (2004)

    Article  Google Scholar 

  15. Brinson L.C.: One-dimensional constitutive behavior of shape memory alloys: thermo-mechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4, 229–242 (1993)

    Article  Google Scholar 

  16. Park J.S., Kim J.H., Moon S.H.: Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibers. Compos. B: Eng. 36, 627–636 (2005)

    Article  Google Scholar 

  17. Daghia F., Inman D.J., Ubertini F., Viola E.: Active shape change of an SMA hybrid composite plate. Smart Struct. Syst. 6, 91–100 (2010)

    Article  Google Scholar 

  18. Rezaei H.D.A., Kadkhodaei M., Nahvi H.: Analysis of nonlinear free vibration and damping of a clamped-clamped beam with embedded prestrained shape memory alloy wires. J. Intell. Mater. Syst. Struct. 23, 1107–1117 (2012)

    Article  Google Scholar 

  19. Brinson L.C., Huang M.S.: Simplifications and comparisons of shape memory alloy constitutive models. J. Intell. Mater. Sys. Struct. 7, 108–114 (1996)

    Article  Google Scholar 

  20. Asadi H., Bodaghi M., Shakeri M., Aghdam M.M.: An analytical approach for nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite beams. Eur J. Mech. A/Solids. 42, 454–468 (2013)

    Article  Google Scholar 

  21. Rechdaoui M.S., Azrar L.: Active control of secondary resonances piezoelectric sandwich beams. Appl. Math. Comput. 216, 3283–3302 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chamis, C.C.: Simplified composite micromechanics equation for hygral, thermal and mechanical properties. NASA TM-83320 (1983)

  23. Tsoi K.A., Stalmans R., Schrooten J., Mai Y.W.: Impact damage behavior of shape memory alloy composites. Mater. Sci. Eng. A 342, 207–215 (2003)

    Article  Google Scholar 

  24. Auricchio F., Sacco E.: A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite. Int. J. Nonlinear Mech. 32, 1101–1114 (1997)

    Article  MATH  Google Scholar 

  25. Ke L.L., Yang J., Kitipornchai S.: An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45, 743–752 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Emam S.A., Nayfeh A.H.: Post-buckling and free vibration of composite beams. Compos. Struct. 88, 636–642 (2009)

    Article  Google Scholar 

  27. Lestari W., Hanagud S.: Nonlinear vibration of buckled beams: some exact solutions. Int. J. Solids. Struct. 38, 4741–4757 (2001)

    Article  MATH  Google Scholar 

  28. Emam S.A., Nayfeh A.H.: Nonlinear responses of buckled isotropic beams to subharmonic-resonance excitations. Nonlinear Dyn. 35, 105–122 (2004)

    Article  MATH  Google Scholar 

  29. Shooshtari A., Rafiee M.: Nonlinear forced vibration analysis of clamped functionally graded beams. Acta Mech. 221, 23–38 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, H., Bodaghi, M., Shakeri, M. et al. Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mech 226, 437–455 (2015). https://doi.org/10.1007/s00707-014-1191-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1191-4

Keywords

Navigation