Skip to main content
Log in

Elastic potentials with best approximation to rubberlike elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An explicit approach is proposed to determine elastic potentials of elastomers for the purpose of eliminating the long-standing uncertainty that the applicability may not be assessed for all deformation modes. Toward this goal, a new experimental scheme for testing nonlinear elastic characteristics of elastomers is first designed for obtaining suitable test data, and then, multi-axial elastic potentials are directly constructed via explicit procedures based on these data. For the first time, the error estimate may be established and minimized errors may be achieved for all possible deformation modes by combining Hermite interpolation with Chebyshev’s best approximation. It is demonstrated that each potential thus obtained may with sufficient accuracy represent nonlinearly elastic properties for all deformation modes. It is shown that even the simplest case of the proposed potential, derived from the uniaxial mode alone, may achieve good agreement with a number of test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand L.: On H. Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  2. Anand L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  3. Aron M.: On certain deformation classes of compressible Hencky materials. Math. Mech. Solids 19, 467–478 (2006)

    MathSciNet  Google Scholar 

  4. Arruda E.M., Boyce M.C.: A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  5. Beatty M.F.: Topic in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1733 (1987)

    Article  Google Scholar 

  6. Beatty M.F.: An average-stretch full-network model for rubber elasticity. J. Elast. 70, 65–86 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beatty M.F.: On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids 13, 375–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyce M.C.: Direct comparison of the gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol. 69, 781–785 (1996)

    Article  Google Scholar 

  9. Boyce M.C., Arruda E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73, 504–523 (2000)

    Article  Google Scholar 

  10. Bruhns O.T., Xiao H., Meyers A.: Self-consistent Eulerian rate type elastoplasticity models based upon the logarithmic stress rate. Int. J. Plast. 15, 479–520 (1999)

    Article  MATH  Google Scholar 

  11. Criscione J.C., Humphrey J.D., Douglas A.S., Hunter W.C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids 48, 2445–2465 (2000)

    Article  MATH  Google Scholar 

  12. Diani J., Gilormini P.: Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids. 53, 2579–2596 (2005)

    Article  MATH  Google Scholar 

  13. Drozdov A.D., Gottlieb M.: Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mech. 183, 231–252 (2006)

    Article  MATH  Google Scholar 

  14. Erman B., Mark J.E.: Rubberlike elasticity. Annu. Rev. Phys. Chem. 40, 351–374 (1989)

    Article  Google Scholar 

  15. Fitzjerald S.: A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51, 5111–5115 (1980)

    Article  Google Scholar 

  16. Fried E.: An elementary molecular-statistical basis for the Mooney and Rivlin–Saunders theories of rubber elasticity. J. Mech. Phys. Solids 50, 571–582 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  18. Gent A.N.: Extensibility of rubber under different types of deformation. J. Rheol. 49, 271–275 (2005)

    Article  Google Scholar 

  19. Hencky, H.: Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z. Techn. Phys. 9, 215–220 (1928) ibid, 457

  20. Hill R.: Constitutive inequalities for simple materials. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  Google Scholar 

  21. Hill R.: Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1970)

    Article  Google Scholar 

  22. Horgan C.O., Murphy J.G.: Limiting chain extensibility constitutive models of Valanis-Landel type. J. Elast. 86, 101–111 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Horgan C.O., Murphy J.G.: A generalization of Hencky’s strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater. 41, 943–950 (2009)

    Article  Google Scholar 

  24. Horgan C.O., Saccomandi G.: A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Horgan C.O., Saccomandi G.: Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids 51, 1127–1146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Horgan C.O., Saccomandi G.: Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol. 79, 1–18 (2006)

    Article  Google Scholar 

  27. Jones D.F., Treloar L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D 8, 1285–1304 (1975)

    Article  Google Scholar 

  28. Lurie A.I.: Nonlinear Theory of Elasticity. Elsevier Science Publishers B.V., Netherlands (1990)

    MATH  Google Scholar 

  29. Miehe C., Göktepe S., Lulei F.: A micro-macro approach to rubberlike materials-Part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids 52, 2617–2660 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Murphy J.G.: Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids 11, 629–641 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ogden R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike materials. Proc. R. Soc. Lond. A 326, 565–584 (1972a)

    Article  MATH  Google Scholar 

  32. Ogden R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for compressible rubber-like materials. Proc. R. Soc. Lond. A 328, 567–583 (1972b)

    Article  MATH  Google Scholar 

  33. Ogden R.W.: Volume changes associated with the deformation of rubber-like solids. J. Mech. Phys. Solids 24, 323–338 (1976)

    Article  Google Scholar 

  34. Ogden, R.W.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

  35. Ogden R.W., Saccomandi G., Sgura I.: On worm-like chain models within the three-dimensional continuum mechanics framework. Proc. R. Soc. Lond. A 462, 749–768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241, 379–397 (1948)

  37. Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  38. Treloar L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  39. Valanis K.C., Landel R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38, 2997–3002 (1967)

    Article  Google Scholar 

  40. Wu P.D., van der Giessen E.: On improved network models for rubber elasticity and their application to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  MATH  Google Scholar 

  41. Xiao H.: Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscip. Model. Mater. Struct. 1, 1–52 (2005)

    Article  Google Scholar 

  42. Xiao H.: An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta. Mech. 223, 2039–2063 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Xiao H., Bruhns O.T., Meyers A.: Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mech. 124, 89–105 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xiao H., Bruhns O.T., Meyers A.: The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate. Proc. Roy. Soc. Lond. A 456, 1865–1882 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Xiao H., Bruhns O.T., Meyers A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004)

    Article  MATH  Google Scholar 

  46. Xiao H., Bruhns O.T., Meyers A.: Elastoplasticity beyond small deformations. Acta Mech. 182, 31–111 (2006)

    Article  MATH  Google Scholar 

  47. Xiao H., Bruhns O.T., Meyers A.: Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Yeoh O.H., Fleming P.D.: A new attempt to reconcile the statistical and phenomenological theories of rubber elasticity. J. Polym. Sci. B 35, 1919–1931 (1997)

    Article  Google Scholar 

  49. Zhang, Y.Y., Li, H., Wang, X.M., Yin, Z.N., Xiao, H.: Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Continuum Mech. Thermodyn. 25, (2013) doi:10.1007/s00161-013-0297-6

  50. Zuniga A.E.: A non-Gaussian network model for rubber elasticity. Polymer 47, 907–914 (2006)

    Article  Google Scholar 

  51. Zuniga A.E., Beatty M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H. Elastic potentials with best approximation to rubberlike elasticity. Acta Mech 226, 331–350 (2015). https://doi.org/10.1007/s00707-014-1176-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1176-3

Keywords

Navigation