Skip to main content
Log in

On a possibility of reconstruction of Cosserat moduli in particulate materials using long waves

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The paper proposes a method of reconstruction of the Cosserat elastic moduli using the measurements of velocities of the p-wave and the high-frequency twist wave as well as the low-frequency asymptotics of a shear wave dispersion relationship. It is shown that in the case of a general isotropic Cosserat continuum, the information obtained from these wave measurements is insufficient for the complete moduli reconstruction. The reconstruction is shown to be possible in the case of a 3D isotropic Cosserat continuum governed by at most four independent parameters. Such a continuum is suggested for a particulate material consisting of spherical particles connected by normal, shear and rotational links. Another case when the full reconstruction is possible consists of 2D orthotropic Cosserat continuum modelling particulate material with square packing of cylindrical particles and 2D isotropic Cosserat continuum modelling with hexagonal packing of cylindrical particles. In the 2D materials, the measurements of p-wave velocity and the shear wave dispersion relationship are sufficient for complete reconstruction of all moduli. A phase shift method and reconstruction algorithms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosserat E., Cosserat F.: Théorie des corps déformables. A. Herrmann et Fils, Paris (1909)

    Google Scholar 

  2. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  3. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  4. Eringen A.C., Kafadar C.B.: Polar field theories. In: Eringen, A.C. (eds) Continuum Physics, IV, Part I, pp. 4–73. Academic Press, New York (1976)

    Google Scholar 

  5. Yoon, H.S., Katz, J.L.: Is bone a Cosserat solid? J. Mat. Sci. 18, 1297–1305 (1983)

    Google Scholar 

  6. Suiker A.S.J., Chang C.S.: Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142(1-4), 223–234 (2000)

    Article  MATH  Google Scholar 

  7. Zvolinskii N.V., Shkhinek K.N.: Continual model of laminar elastic medium. Mech. Solids 19(1), 1–9 (1984)

    Google Scholar 

  8. Mühlhaus, H.-B.: Continuum models for layered and blocky rock. In: Comprehensive Rock Eng. Analysis and Design Methods, II, Pergamon Press, pp. 209-230 (1993)

  9. Adhikary D.P, Dyskin A.V.: A Cosserat continuum model for layered materials. Comput. Geotech. 20(1), 15–45 (1997)

    Article  Google Scholar 

  10. Mühlhaus, H.-B., Dyskin, A., Pasternak, E., Adhikary D.: Non-standard continuum theories in geomechanics: theory, experiments and analysis, In: Picu, R.C., Kremple, E., (eds), Proceedings of the Fourth International Conference on Constitutive Laws for Engineering Materials Troy, New York, pp. 321–324 (1999)

  11. Pasternak, E., Mühlhaus, H.-B.: Travelling waves and fracture processes in layered materials: a Cosserat Continuum approach. In: Heness, G. (ed.) Structural Integrity and Fracture. The University of Technology, Sydney, Australia, Australian Fracture Group, pp. 40–48 (2000)

  12. Satake M.: Some considerations on the mechanics of granular materials. In: Kroner, E. (ed.) Mechanics of Generalised Continua, pp. 156–159. Springer-Verlag, Berlin (1968)

  13. Mühlhaus H-B., Vardoulakis I.: The thickness of shear bands in granular materials. Géotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  14. Mühlhaus H-B., Oka F.: Dispersion and wave propagation in discrete and continuous models of granular materials. Int. J. Solids Struct. 33, 2841–2858 (1996)

    Article  MATH  Google Scholar 

  15. Mühlhaus, H.-B., de Borst, R., Aifantis, E.C.: Constitutive models and numerical analyses for inelastic materials with microstructure. In: Beer, G. et al (eds.) Computing Methods and Advances in Geomechanics, pp. 377–385 (1991)

  16. Chang C.S., Ma L.: Elastic material constants for isotropic granular solids with particle rotation. Int. J. Solids Struct. 29, 1001–1018 (1992)

    Article  MATH  Google Scholar 

  17. Ehlers W., Ramm E., Diebels S., d’Addetta G.A.: From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses. Int. J. Solids Structs. 40, 6681–6702 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kruyt N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Structs. 40(3), 511–534 (2003)

    Article  MATH  Google Scholar 

  19. Tordesillas, A., Walsh S.D.C.: Analysis of deformation and localization in thermomicromechanical Cosserat models of granular media. In: Garcia-Rojo, R., Herrmann, H., McNamara, S. (eds.) Powders and Grains 2005, Balkema, pp. 419–424 (2005)

  20. Goddard, J.D.: Granular hypoplasticity with Cosserat effects. In: Goddard, J.D., Jenkins, J.T., Giovine, P. (eds.) Proceedings of the IUTAM-ISIMM Sump. Mathematical Modelling and Physical Instances of Granular Flows, AIP Conf. Proc. No1227, New York, pp. 223–232 (2009)

  21. Alonso-Marroquin F.: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matt. 13, 189–196 (2011)

    Article  Google Scholar 

  22. Pouget J., Askar A., Maugin G.A.: Lattice model for ferroelectric crystals: continuum approximation. Phys. Rev. B. 33, 4320–4325 (1986)

    Article  Google Scholar 

  23. Pouget J., Askar A., Maugin G.A.: Lattice model for ferroelectric crystals: Microscopic approach approximation. Phys. Rev. B. 33, 6304–6319 (1986)

    Article  Google Scholar 

  24. Pasternak, E., Mühlhaus, H.-B.: Cosserat and non-local continuum models for problems of wave propagation in fractured materials, In: Zhao, X.L., Grzebieta, R.H. (eds.) Structural Failure and Plasticity (IMPLAST 2000), Pergamon, pp. 741–746 (2000)

  25. Pasternak, E., Mühlhaus, H.-B.: Cosserat continuum modelling of granulate materials. In: Valliappan, S., Khalili, N. (eds) Computational Mechanics—New Frontiers for New Millennium Elsevier Science, pp. 1189–1194 (2001)

  26. Pasternak, E., Mühlhaus, H.-B.: Large deformation Cosserat continuum modelling of granulate materials, In: Zhang, L., Tong, L., Gal, J. (eds.) Applied mechanics. Progress and application. ACAM 2002 The Third Australasian Congress on Applied Mechanics Sydney, February 20-22, 2002 World Scientific, Singapore, New Jersey, London, Hong Kong, pp. 389–396 (2002)

  27. Pasternak, E., Mühlhaus, H.-B.: A non-local Cosserat model of heterogeneous materials: 1D structures, In: Dyskin, A.V., Hu, X.Z., Sahouryeh, E. (eds) Structural Integrity and Fracture Swets and Zeitlinger, Lisse, pp. 107–114 (2002)

  28. Pasternak, E., Mühlhaus, H.-B., Dyskin, A.V.: Apparent strain localization and shear wave dispersion in elastic fault gouge with microrotations. In: Mühlhaus, H.-B., Weatherley, D.K. (eds.). International Conference on Computational Science ICCS 2003, Springer Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, LNCS Volume 2659, pp. 873–882 (2003)

  29. Pasternak E., Mühlhaus H.-B., Dyskin A.V.: On the possibility of elastic strain localisation in a fault. Pure Appl. Geophys. 161, 2309–2326 (2004)

    Article  Google Scholar 

  30. Pasternak E., Mühlhaus H.-B.: Generalised homogenisation procedures for granular materials. Eng. Math. 52, 199–229 (2005)

    Article  MATH  Google Scholar 

  31. Pasternak E., Mühlhaus H.-B., Dyskin A.V.: Finite deformation model of simple shear of fault with microrotations: Apparent strain localisation and en-echelon fracture pattern. Philos. Magaz. 86(21-22), 3339–3371 (2006)

    Article  Google Scholar 

  32. Pavlov I.S., Potapov A.I., Maugin G.A.: A 2D granular medium with rotating particles. Solids Struct. 43, 6194–6207 (2006)

    Article  MATH  Google Scholar 

  33. Pasternak E., Mühlhaus H.-B., Dyskin A.V.: Rotational degrees of freedom in modelling materials with intrinsic length scale. In: Markert, B. (ed.) Advances in Extended and Multifield Theories for Continua, Lecture Notes in Applied and Computational Mechanics, Vol. 59, pp. 47–67. Springer, Berlin (2011)

  34. Shufrin I., Pasternak E., Dyskin A.V.: Planar isotropic structures with negative Poisson’s ratio. Int. J. Solids Struct. 49, 2239–2253 (2012)

    Article  Google Scholar 

  35. Sluys L.J., de Borst R., Mühlhaus H.-B.: Wave propagation, localisation and dispersion in a gradient dependent medium. Int. J. Solids Struct. 30, 1153–1171 (1993)

    Article  MATH  Google Scholar 

  36. Eringen C.: Microcontinuum Field Theories, I: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  37. Gauthier R.D., Jahsman W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)

    Article  Google Scholar 

  38. Gauthier R.D.: Experimental investigation of micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds) Mechanics of Micropolar Media, pp. 395–463. World Scientific, Singapore (1982)

    Chapter  Google Scholar 

  39. Yang J.F.C., Lakes R.S.: Experimental study of micropolar and couple stress elasticity in compact bone bending. J. Biomech. 15(2), 91–98 (1993)

    Article  Google Scholar 

  40. Potapov A.I., Rodyushkin V.M.: Experimental study of strain waves in materials with a microstructure. Akustich. Zurn. 47, 407–12 (2001)

    Google Scholar 

  41. Merkel A., Tournat V., Gusev V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22), 225502 (2011)

    Article  Google Scholar 

  42. Teisseyre R., Suchcicki J., Teisseyre K.P., Wiszniowski J., Palangio P.: Seismic rotation waves: basic elements of theory and recording. Ann. Geophys. 46(4), 1–15 (2011)

    Google Scholar 

  43. Onck P.R.: Cosserat modeling of cellular solids. C. R. Mécanique 330, 717–722 (2002)

    Article  MATH  Google Scholar 

  44. Suiker A.S.J., Metrikine A.V., Borst R. de.: Comparison of wave propagation characteristics of the Cosserat continuum and corresponding lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)

    Article  MATH  Google Scholar 

  45. Suiker A.S.J., de Borst R.: Enhanced continua and discrete lattices for modelling granular assemblies. Philos. Trans. R. Soc. A 363, 2543–2580 (2005)

    Article  MATH  Google Scholar 

  46. Askes H., Metrikine A.V.: Higher-order continua derived from discrete media: continualisation aspects and boundary conditions. Int. J. Solids Struct. 42, 187–202 (2005)

    Article  MATH  Google Scholar 

  47. Metrikine A.V., Askes H.: An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos. Magaz. 86, 3259–3286 (2006)

    Article  Google Scholar 

  48. Potapov A.I., Pavlov I.S., Lisina S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322, 564–580 (2009)

    Article  Google Scholar 

  49. Sab K., Pradel F.: Homogenisation of periodic Cosserat media. Int. J. Comp. Appl. Technol. 34, 60–71 (2009)

    Article  Google Scholar 

  50. Lombardo M., Askes H.: Higher–order gradient continuum modelling of periodic lattice materials. Comput. Mat. Sci. 52, 204–208 (2012)

    Article  Google Scholar 

  51. Pal’mov V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Math. Mech. 28, 496–505 (1964)

    Article  MathSciNet  Google Scholar 

  52. Nowacki W.: Theory of Micropolar Elasticity. Springer, Wien (1970)

    Book  Google Scholar 

  53. Pasternak, E., Dyskin, A.V.: Measuring of Cosserat effects and reconstruction of moduli using dispersive waves. In: Maugin, G.A., Metrikine, A.V. (eds.). Mechanics of Generalized Continua: One hundred years after the Cosserats. Springer series “Advances in Mechanics and Mathematics”, 21, Springer, New York, pp. 65–72 (2010)

  54. Pasternak, E., Dyskin, A.V.: Reconstruction of Cosserat moduli in particulate materials. In: Papanastasiou, P. et al (eds.) 9th HSTAM10, Limassol, Cyprus 12–14 July 2010, Vardoulakis mini-symposia—Higher Order Continua, paper 133, pp. 69–75 (2010)

  55. Kulesh M.: Waves in linear elastic media with microrotations, part 1: Isotropic full Cosserat model. Bull. Seismol. Soc. Am. 99, 1416–1422 (2009)

    Article  Google Scholar 

  56. Grekova E.F., Kulesh M.A., Herman G.C.: Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model. Bull. Seismol. Soc. Am. 99, 1423–28 (2009)

    Google Scholar 

  57. Dyskin, A.V., Pasternak, E.: Rotational mechanism of in-plane shear crack growth in rocks under compression. In: Potvin, Y., Carter, J., Dyskin A., Jeffrey, R. (eds.) Proceedings of the 1st southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, Australian Centre for Geomechanics, 2, pp. 99–110 (2008)

  58. Landau L.D., Lifshitz E.M.: Theory of Elasticity. Butterworth-Heinemann, London (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pasternak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasternak, E., Dyskin, A.V. On a possibility of reconstruction of Cosserat moduli in particulate materials using long waves. Acta Mech 225, 2409–2422 (2014). https://doi.org/10.1007/s00707-014-1132-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1132-2

Keywords

Navigation