Skip to main content
Log in

First-passage failure of Duhem hysteretic systems

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Mechanical and structural systems under dynamic loading always represent hysteresis behavior, which is a typical nonlinear phenomenon and lets the dynamic responses of the systems remarkably deviate from that of corresponding equivalent linear systems. The Duhem hysteretic model is versatile to cover most existing hysteresis models and to describe the hysteretic behavior more accurately, and the investigation and application of that are abundant. The combination of the equivalent nonlinearization technique, which transforms the hysteretic force into energy-depending damping and stiffness, and the stochastic averaging technique yields the best forecast for the dynamic responses. The first-passage failure of Duhem hysteretic systems, an important question in random vibration, however, remains open. The analysis of the backward Kolmogorov equation associated with the averaged Itô stochastic differential equation generates the reliability function and probability density function, and the effects of system parameters on first-passage failure are discussed concisely. The present work will guide the parameter design of the Duhem materials to decrease the probability of first-passage failure and make the Duhem systems safer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wen Y.K.: Approximate method for nonlinear random vibration. ASCE J. Eng. Mech. Div. 101, 389–401 (1975)

    Google Scholar 

  2. Krasnoselskii M.A., Pokrovskii A.V.: Systems with Hysteresis. Springer, Berlin (1989)

    Book  Google Scholar 

  3. Noori M.N., Choi J.D., Davoodi H.: Zero and nonzero mean random vibration analysis of a new general hysteresis model. Prob. Eng. Mech. 1, 192–201 (1986)

    Article  Google Scholar 

  4. Baber T.T., Noori M.N.: Modeling general hysteresis behavior and random vibaration application. ASME J. Vib. Acoust. Stress Reliab. Des. 108, 411–420 (1986)

    Article  Google Scholar 

  5. Visintin A.: Differential Model of Hysteresis. Springer, Berlin (1994)

    Google Scholar 

  6. Lutes L.D.: Approximate technique for treating random vibration of hysteretic systems. J. Acoust. Soc. Am. 48, 299–306 (1970)

    Article  Google Scholar 

  7. Bouc, R.: Forced vibration of hysteretic systems. In: Abstract Proceedings of the s4th Conference on Non-Linear Oscillation, Prague, Czechoslovakia, pp. 315–315 (1967)

  8. Wen Y.K.: Method for random vibration of hysteretic systems. ASCE J. Eng. Mech. Div. 102, 249–263 (1976)

    Google Scholar 

  9. Dahl P.K.: Solid friction damping of mechanical vibrations. AIAAJ 14, 1675–1682 (1976)

    Article  Google Scholar 

  10. Yar M., Hammond J.K.: Modeling and response of bilinear hysteretic systems. ASCE J. Eng. Mech. Div. 113, 1000–1013 (1987)

    Article  Google Scholar 

  11. Mayergoyz I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  12. Visintin A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    MATH  Google Scholar 

  13. Ying Z.G, Zhu W.Q., Ni Y.Q., Ko J.M.: Random response of Duhem hysteretic systems. J Sound. Vib. 254, 91–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Anagnos T., Kiremidjian A.S.: A review of earthquake occurrence models for seismic hazard analysis. Prob. Eng. Mech. 3, 3–11 (1988)

    Article  Google Scholar 

  15. Simiu E., Scanlan R.H.: Wind Effects on Structures: An Introduction to Wind Engineering. Wiley, New York (1986)

    Google Scholar 

  16. Caughey T.K.: Equivalent linearization techniques. J. Acoust. Soc. Am. 35, 1706–1711 (1963)

    Article  MathSciNet  Google Scholar 

  17. Atalik T.S., Utku S.: Stochastic linearization of multi-degree-of-freedom non-linear systems. Earthq. Eng. Struct. Dyn. 4, 411–420 (1976)

    Article  Google Scholar 

  18. Socha L., Soong T.T.: Linearization in analysis of nonlinear stochastic systems. ASME Appl. Mech. Rev. 44, 399–422 (1991)

    Article  MathSciNet  Google Scholar 

  19. Stratonovitch R.L.: Topics in the Theory of Random Noise, Vol. 1. Gordon and Breach, New York (1963)

    Google Scholar 

  20. Khasminskii R.Z.: A limit theorem for the solutions of differential equations with random right-hand sides. Theory Probab. Appl. 11, 390–405 (1966)

    Article  Google Scholar 

  21. Zhu W.Q., Yang Y.Q.: Stochastic averaging of quasi non-integrable-Hamiltonian systems. ASME J. Appl. Mech. 64, 157–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhu W.Q., Huang Z.L., Yang Y.Q.: Stochastic averaging of quasi-integrable-Hamiltonian systems. ASME J. Appl. Mech. 64, 975–984 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noori M.: First-passage study and stationary response analysis of a BWB hysteresis model using quasi-conservative stochastic averaging method. Prob. Eng. Mech. 10, 161–170 (1995)

    Article  Google Scholar 

  24. Lin Y.K., Cai G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Application. McGraw-Hill, New York (1995)

    Google Scholar 

  25. Lin Y.K., Cai G.Q.: Some thoughts on averaging techniques in stochastic dynamics. Prob. Eng. Mech. 15, 7–14 (2000)

    Article  Google Scholar 

  26. Tsiatas G., Sadid H.: Earthquake response of hysteretic mass-column using non-Gaussian closure. Soil. Dyn. Earthq. Eng. 10, 236–248 (1991)

    Article  Google Scholar 

  27. Shih T.Y., Lin Y.K.: Vertical load effect on hysteretic columns. ASCE J. Eng. Mech. Div. 108, 242–254 (1982)

    Google Scholar 

  28. Kanai K.: Seismic-empirical formula for the seismic characteristics of the ground. Bull. Earthq. Res. Inst. Jpn. 35, 309–325 (1957)

    Google Scholar 

  29. Tajimi, H.: A statistics method of determining the maximum response of a building structure during an earthquake. In: Proceedings of the 2nd Word Conference Earthquake Engineering, Tokyo-Kyoto, Japan, pp. 781–798 (1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ling Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Jin, XL. & Huang, ZL. First-passage failure of Duhem hysteretic systems. Acta Mech 223, 1959–1970 (2012). https://doi.org/10.1007/s00707-012-0679-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0679-z

Keywords

Navigation