Skip to main content

Advertisement

Log in

A thermodynamic framework for a gradient theory of continuum damage

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present a formulation of state variable based gradient theory to model damage evolution and alleviate numerical instability associated within the post-bifurcation regime. This proposed theory is developed using basic microforce balance laws and appropriate state variables within a consistent thermodynamic framework. The proposed theory provides a strong coupling and consistent framework to prescribe energy storage and dissipation associated with internal damage. Moreover, the temporal evolution equation derived here naturally shows the effect of damage—nucleation, growth and coalescence. In addition, the theoretical framework presented here is easily extendable to the addition of other defects (not shown here), and can be generalized to the development of consistent coupled transport equations for species, such as hydrogen (Bammann et al. in JMPS, 2009, submitted), as well as providing a consistent structure for modeling events at diverse length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bammann, D.J., Novak, P., Sofronis, P., Somerday, B.: A coupled dislocation-hydrogen based model of inelastic deformation of metals and alloys. JMPS (2009, submitted)

  2. Cosserat E., Cosserat F.: Theorie des corps deformables. Hermann et Fils, Paris (1909)

    Google Scholar 

  3. Dillon O.W., Kratochvil J.: A strain gradient theory of plasticity. Int. J. Solids Struct. 6, 1533–1566 (1970)

    Google Scholar 

  4. Nunziato J.W., Cowin S.C.: Non-linear theory of elastic-materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bammann, D.J., Aifantis, E.C.: On the perfect lattice-dislocated state interaction. In: Selvadurai, A.P.S. (ed.) Mechanics of Structured Media. In: Proceedings of the International Symposium on the Mechanical Behaviour of Structured Media, Ottawa, pp. 79–91 (1981)

  6. Bammann D.J., Aifantis E.C.: On a proposal for a continuum with microstructure. Acta Mech. 45(1–2), 91–121 (1982)

    Article  MATH  Google Scholar 

  7. Aifantis E.C.: On the microstructural origin of certain inelastic models. Trans. ASME J. Eng. Mater. Technol. 95, 215–229 (1984)

    Google Scholar 

  8. Bammann D.J.: An internal variable model of visco-plasticity. Int. J. Eng. Sci. 22, 1041–1053 (1984)

    Article  MATH  Google Scholar 

  9. Brown S.B., Kim K.H., Anand L.: An internal variable constitutive model for hot-working of metals. Int. J. Plast. 5(2), 95–130 (1989)

    Article  MATH  Google Scholar 

  10. McDowell D.L.: A bounding surface theory for cyclic thermoplasticity. J. Eng. Mater. Technol. Trans. ASME 114(3), 297–303 (1992)

    Article  Google Scholar 

  11. Zbib H.M., Aifantis E.C.: On the gradient-dependent theory of plasticity and shear banding. Acta Mech. 92, 209–225 (1992)

    Article  MATH  Google Scholar 

  12. Fleck N.A., Hutchinson J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 30, 1825–1857 (1993)

    Article  MathSciNet  Google Scholar 

  13. Tvergaard V., Needleman A.: Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32(8–9), 1063–1077 (1995)

    Article  MATH  Google Scholar 

  14. Gurtin M.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nix W.D., Gao H.J.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  16. Ramaswamy S., Aravas N.: Finite-element implementation of gradient plasticity models: Part I: gradient-dependent yield functions. Comput. Methods Appl. Mech. Eng. 163(1–4), 11–32 (1998)

    Article  MATH  Google Scholar 

  17. Gurtin M.: On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. JMPS 48, 989–1036 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Regueiro R.A., Bammann D.J., Marin E.B., Garikipati V.: A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. Trans. ASME 124, 380–387 (2002)

    Article  Google Scholar 

  19. Hutchinson J.W.: Plasticity at the micron scale. Int. J. Solids Struct. 37, 225–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Clayton J.D., McDowell D.L, Bammann D.J.: A multiscale gradient theory for single crystalline elastoviscoplasticity. Int. J. Eng. Sci. 42, 427–457 (2004)

    Article  MathSciNet  Google Scholar 

  21. Bammann, D.J., Solanki, K.N.: On kinematic, thermodynamic and coupling of a damage theory for polycrystalline material. IJP (2009, submitted)

  22. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fried E., Gurtin M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326–343 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kachanov M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk. USSR Otdelenie Tech. Nauk 8, 26–31 (1958)

    Google Scholar 

  25. Bammann D.J.: A model of crystal plasticity containing a natural length scale. Math. Sci. Eng. A309–A310, 406–410 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran N. Solanki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, K.N., Bammann, D.J. A thermodynamic framework for a gradient theory of continuum damage. Acta Mech 213, 27–38 (2010). https://doi.org/10.1007/s00707-009-0200-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0200-5

Keywords

Navigation