Skip to main content
Log in

The orientational orders of poly(β-phenethyl l-aspartate) in two opposite α-helical form: a molecular dynamic simulation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

For a poly(β-phenethyl l-aspartate) (PPLA) segment with 30 structural units, molecular dynamics (MD) simulation was carried out. The α-helical backbone of PPLA molecules undergoes torsional motion in the molecular dynamics equilibrium state. However, on the average, the backbone adheres to α-helical forms in the Amber force field. The geometrical structure of PPLA is slightly relaxed in the MD equilibrium state and has a potential about 4800 kJ/mol higher than that in the minimized energy structure. The quadrupolar splittings observed by the deuterium nuclear magnetic resonance technique in the lyotropic liquid-crystalline state have been reasonably reproduced by the simulation calculations. The large difference of observed ratio Δν CDν N between the right- and left-handed PPLA has been explained by the geometrical architecture and verified by the simulation calculations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luijten J, Vorenkamp EJ, Schouten AJ (2007) Langmuir 23:10772

    Article  CAS  Google Scholar 

  2. Marx A, Thiele C (2009) Chem Eur J 15:254

    Article  CAS  Google Scholar 

  3. Marx A, Boettcher B, Thiele CM (2010) Chem Eur J 16:1656

    Article  CAS  Google Scholar 

  4. Novotna P, Urbanova M (2010) Chem Listy 104:161

    CAS  Google Scholar 

  5. Kuo S, Chen C (2012) Macromolecules 45:2442

    Article  CAS  Google Scholar 

  6. Itoh T, Hatanaka T, Ihara E (2012) Polym J 44:189

    Article  CAS  Google Scholar 

  7. Mondeshki M, Spiess HW, Aliferis T (2011) Eur Polym J 47:668

    Article  CAS  Google Scholar 

  8. Segura-Sánchez F, Montembault V, Fontaine L (2010) Int J Pharm 387:244

    Article  Google Scholar 

  9. Bradbury EM, Carprnter BG, Stephens RM (1968) Biopolymers 6:905

    Article  CAS  Google Scholar 

  10. Hashimoto M, Arakawa S (1967) Bull Chem Jpn 40:1698

    Article  Google Scholar 

  11. Toriumi H, Saso N, Yasumoto Y, Sasaki S, Uematsu I (1979) Polym J 11:977

    Article  CAS  Google Scholar 

  12. Sasaki S, Yasumoto Y, Uematsu I (1981) Macromolecules 14:1797

    Article  CAS  Google Scholar 

  13. Abe A, Okamoto S, Kimura N, Tamura K, Onigawara H (1993) Acta Polym 44:54

    Article  CAS  Google Scholar 

  14. Okamoto S, Abe A (1993) Rep Prog Polym Phys Jpn 36:517

    Google Scholar 

  15. Watanabe J, Okamoto S, Abe A (1993) Liq Cryst 15:259

    Article  CAS  Google Scholar 

  16. Abe A, Furuya H, Okamoto S (1997) Biopolymer 43:405

    Article  CAS  Google Scholar 

  17. Abe A (1997) Macromol Symp 118:23

    Article  CAS  Google Scholar 

  18. Imada Y, Abe A (2010) Polymer 51:6227

    Article  CAS  Google Scholar 

  19. Abe A, Imada Y, Furuya H (2010) Polymer 51:6234

    Article  CAS  Google Scholar 

  20. Yamazaki T, Abe A (1987) Polym J 19:777

    Article  CAS  Google Scholar 

  21. Abe A, Yamazaki T (1989) Macromolecules 22:2138

    Article  CAS  Google Scholar 

  22. Okamoto S, Furuya H, Abe A (1995) Poly J 27:746

    Article  CAS  Google Scholar 

  23. Abe A, Furuya H (1989) Macromolecules 22:2982

    Article  CAS  Google Scholar 

  24. Abe A, Furuya H, Shimizu RN, Nam SY (1995) Macromolecules 28:96

    Article  CAS  Google Scholar 

  25. Abe A, Kimura N (1993) Computer Aided Innovation of New Materials II. Elsevier, Amsterdam, p 1409

    Book  Google Scholar 

  26. Helfrich J, Hentschke R, Apel UM (1994) Macromolecules 27:472

    Article  CAS  Google Scholar 

  27. Arnott S, Wonacott AJ (1966) J Mol Biol 21:371

    Article  CAS  Google Scholar 

  28. Ando I, Kuroki S, Kurosu H, Yamanobe T (2001) Prog Nucl Mag Res Spectr 39:79

    Article  CAS  Google Scholar 

  29. Ramachandran GN, Sasisekharan V (1968) Adv Protein Chem 23:283

    Article  CAS  Google Scholar 

  30. Donohue J (1953) Proc Natl Acad Sci 39:470

    Article  CAS  Google Scholar 

  31. Zhou Z, Tao L, Yang W (2015) Polym Polym Compos 23:51

    CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the financial supports from the National Basic Research Program of China (973 Program, No. 2012CB821500), the National Natural Science Foundation of China (No. 21404050), Jiangsu Province for supporting this project under the innovation/entrepreneurship program (Surencaiban[2015]26), the Postdoctoral Science Foundation of China (No. 2015M580394), the Research Foundation of Jiangsu University (No. 14JDG059), and the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402019A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Zhou, Z., Nie, Y. et al. The orientational orders of poly(β-phenethyl l-aspartate) in two opposite α-helical form: a molecular dynamic simulation. Monatsh Chem 148, 1251–1258 (2017). https://doi.org/10.1007/s00706-016-1828-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1828-1

Keywords

Navigation