Skip to main content
Log in

Adsorption of guanine at the interface electrode-acetic buffer solution and its influence on zinc cation electroreduction

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Guanine plays an important role in many biological processes since it constitutes the buildings blocks of DNA and RNA. Solutions of guanine were prepared to cover the range from 5 × 10−5 to 8 × 10−4 M. Adsorption of guanine on a mercury electrode in acetic buffers at pH 4 and pH 6 is described by means of the adsorption isotherms constants calculated from the surface pressure as a function of electrode potential and adsorbate bulk concentration. The adsorption parameters from the double layer were calculated based on the data from the differential capacity–potential curves. The entirely different change in the differential capacity in two applied acetate buffers in the absence of guanine results from different buffer composition, as in a solution with a pH 4 adsorption primarily involves acetic acid molecules, whereas in a buffer with a pH 6-acetate ions. The possibility to accurately determine E max and σ max parameters points to a physical character of guanine adsorption, which must be associated with the fact that adsorbed guanine molecules are vertically or diagonal oriented. Obtained R A (charge transfer resistance at formal potential) changes are minor and comply with changes in ΔE. Therefore, it may be concluded that in the tested range of guanine concentrations, it has no effect on kinetics of zinc cation depolarisation at a mercury electrode both in the buffer with pH 4 and pH 6.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sieńko D, Nieszporek J, Nieszporek K, Gugała D, Saba J (2006) Collect Czech Chem Commun 71:1393

    Article  Google Scholar 

  2. Pilla AA (1974) Bioelectrochem Bioenerg 1:227

    Article  CAS  Google Scholar 

  3. Sridharan R, De Levie R (1986) J Electroanal Chem 201:133

    Article  CAS  Google Scholar 

  4. Wandowski T (1991) J Electroanal Chem 302:233

    Article  Google Scholar 

  5. De Levie R, Wandlowski T (1994) J Electroanal Chem 366:265

    Article  Google Scholar 

  6. Nikitas P, Pappa-Louisi A (1993) J Electroanal Chem 346:483

    Article  CAS  Google Scholar 

  7. Sowerby SJ, Petersen GB (1997) J Electroanal Chem 433:85

    Article  CAS  Google Scholar 

  8. Roelfs R, Bunge E, Schroter C, Soloimin T, Meyer H, Nichols RJ, Baumgartel H (1997) Phys Chem B 101:754

    Article  CAS  Google Scholar 

  9. Popov A, Naneva R, Dimitrov N, Vitanov T, Bostanov V, De Levie R (1992) Electrochim Acta 37:2369

    Article  CAS  Google Scholar 

  10. Popov A, Dimitrov N, Vitanov T (1992) Electrochim Acta 37:2373

    Article  Google Scholar 

  11. Holzle MH, Krznaric D, Kolb DM (1995) J Electroanal Chem 386:235

    Article  Google Scholar 

  12. Kamal MM, Ahmed ZA, Ahmed ME, Ibrahim MS, Temerk YM (1991) Bioelectrochem Bioenerg 25:137

    Article  CAS  Google Scholar 

  13. Nikitas P (1988) J Electroanal Chem 251:235

    Article  CAS  Google Scholar 

  14. Trasatti S (1986) In: Silva AF (ed) Interfacial electrochemistry. Reidel, Dordrecht

    Google Scholar 

  15. Lipkowski J, Buess-Herman C, Lambert JP, Gierst L (1986) J Electroanal Chem 202:169

    Article  CAS  Google Scholar 

  16. Nieszporek J (2011) J Electroanal Chem 662:407

    Article  CAS  Google Scholar 

  17. Solis V, Iwasita T, Pavese A, Vielstich W (1988) J Electroanal Chem 255:155

    Article  CAS  Google Scholar 

  18. Sun SG, Clavilier J (1987) J Electroanal Chem 236:95

    Article  CAS  Google Scholar 

  19. Nieszporek J, Dagci K (2014) Electrochim Acta 125:473

    Article  CAS  Google Scholar 

  20. Nieszporek J (2013) J Electroanal Chem 706:108

    Article  CAS  Google Scholar 

  21. Nosal-Wiercińska A (2010) Central Eur J Chem 8:1

    Article  Google Scholar 

  22. Nosal-Wiercińska A (2011) J Electroanal Chem 654:66

    Article  Google Scholar 

  23. Nosal-Wiercińska A (2014) Electroanalysis 26:1013

    Article  Google Scholar 

  24. Gugala D, Fekner Z, Sieńko D, Nieszporek J, Saba J (2004) Electrochim Acta 49:2227

    Article  CAS  Google Scholar 

  25. Gugała-Fekner D, Sieńko D, Nieszporek J, Klin M, Saba J (2009) J Colloid Interface Sci 332:291

    Article  Google Scholar 

  26. Klin M, Nieszporek J, Sieńko D, Gugała-Fekner D, Saba J (2011) Acta Chim Slov 58:26

    CAS  Google Scholar 

  27. Gugała-Fekner D, Nieszporek J, Sieńko D (2015) Monatsh Chem 146:541

    Article  Google Scholar 

  28. Lasia A (1999) In: Conway BE, Bockris J, White RE (eds) Electrochemical impedance spectroscopy and its applications. Modern aspects of electrochemistry. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  29. De Batisti A, Trasatti S (1974) J Electroanal Chem 54:1

    Article  Google Scholar 

  30. Mohilner DM, Nakadomari H (1973) J Phys Chem 74:1594

    Article  Google Scholar 

  31. Mohilner DM, Browman LW, Freeland SJ, Nakadomari H (1973) J Electrochem Soc 120:1658

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Gugała-Fekner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gugała-Fekner, D. Adsorption of guanine at the interface electrode-acetic buffer solution and its influence on zinc cation electroreduction. Monatsh Chem 147, 1855–1862 (2016). https://doi.org/10.1007/s00706-016-1825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1825-4

Keywords

Navigation