Skip to main content
Log in

Tetradentate hydrazone metal complexes derived from cefazolin and 2,6-diacetylpyridine hydrazide: synthesis, characterization, and antibacterial activity

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Tetradentate metal(II) coordination compounds of cefazolin 2,6-diacetylpyridinehydrazone ligand HL derived from the condensation of cefazolin antibiotic with 2,6-diacetylpyridine hydrazide were synthesized. The ligand and mononuclear [ML(H2O)2][PF6] (M = Mn2+, Co2+, Ni2+, Zn2+) complexes were characterized by elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, 1H NMR, and molecular modeling studies. The ligand behaves as a monoanionic tetradentate NNOO chelating agent. The biological applications of complexes have been studied on two bacteria strains (Escherichia coli and Staphylococcus aureus) by agar disk diffusion method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ishwar BK, Mishra SK, Jainey PJ, Shastry CS (2011) J Chem Pharm Res 3:114

    Google Scholar 

  2. Singh K, Barwa MS, Tyagi P (2007) Eur J Med Chem 42:394

    Article  CAS  Google Scholar 

  3. Travis J, Potempa J (2000) Biochim Biophys Acta 14:35

    Article  Google Scholar 

  4. Hoi NP, Xuong ND, Nam NH, Binon F, Royer R (1953) J Chem Soc 1358–1364

  5. Mohan M, Kumar A, Kumar M, Jha NK (1987) Inorg Chim Acta 136:65

    Article  CAS  Google Scholar 

  6. Abadi AH, Eissa AAH, Hassan GS (2003) Chem Pharm Bull 51:838

    Article  CAS  Google Scholar 

  7. Terzioğlu N, Gürsoy A (2003) Eur J Med Chem 38:781

    Article  Google Scholar 

  8. Savini L, Chiasserini L, Travagli V, Pellerano C, Novellino E, Cosentino S, Pisano MB (2004) Eur J Med Chem 39:113

    Article  CAS  Google Scholar 

  9. Carvalho SA, Da Silva EF, De Souza MVN, Lourenço MCS, Vicente FRC (2008) Bioorg Med Chem Lett 18:538

    Article  CAS  Google Scholar 

  10. Vergara FMF, Da Silva CHL, Henriques MGMO, Candéa ALP, Lourenço MCS, Ferreira ML, Kaiser CR, De Souza MVN (2009) Eur J Med Chem 44:4954

    Article  CAS  Google Scholar 

  11. Ergenç N, Günay NS (1998) Eur J Med Chem 33:143

    Article  Google Scholar 

  12. Anacona JR, Brito L, Peña W (2012) Synth React Inorg, Met-Org, Nano-Met Chem 42:1278

    Article  CAS  Google Scholar 

  13. Anacona JR, Ortega G (2015) Synth React Inorg, Met-Org, Nano-Met Chem 45:363

    Article  CAS  Google Scholar 

  14. Anacona JR, Santaella JJ (2013) Spectrochim Acta A 115:800

    Article  CAS  Google Scholar 

  15. Anacona JR, Rodríguez JL, Camus J (2014) Spectrochim Acta A 129:96

    Article  CAS  Google Scholar 

  16. Anacona JR, Noriega N, Camus J (2015) Spectrochim Acta A 137:16

    Article  CAS  Google Scholar 

  17. Geary W (1971) Coord Chem Rev 7:81

    Article  CAS  Google Scholar 

  18. Badea M, Emandi A, Marinescu D, Cristurean E, Olar R, Braileanu A, Budrugeac P, Segal E (2003) J Therm Anal Calorim 72:525

    Article  CAS  Google Scholar 

  19. Simmons WW (1978) The Sadtler handbook of proton NMR spectra. Sadtler Research Laboratories Inc, Philadelphia

    Google Scholar 

  20. Bachi A, Carcelli M, Pelizzi G, Solinas C, Sorace L (2006) Inorg Chim Acta 359:2275

    Article  Google Scholar 

  21. Baldini M, Belicchi-Ferrari M, Bisceglie F, Pelosi G, Pinelli S, Tarasconi P (2003) Inorg Chem 42:2055

    Article  Google Scholar 

  22. Socrates G (1980) Infrared characteristic group frequencies. Wiley, New York

    Google Scholar 

  23. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  24. Sathyanarayana DN, Nicholls D (1978) Spectrochim Acta A 34:263

    Article  Google Scholar 

  25. Wang YY, Zhou LJ, Shi Q, Shi QZ (2002) Transit Met Chem 27:145

    Article  CAS  Google Scholar 

  26. Das MK, Nath M, Zuckerman JJ (1983) Inorg Chim Acta 71:49

    Article  CAS  Google Scholar 

  27. Bain GA, Barry JF (2008) J Chem Ed 85:532

    Article  CAS  Google Scholar 

  28. Chohan ZH, Kausar S (2000) Met-Based Drugs 7:17

    Article  CAS  Google Scholar 

  29. Sonmez M, Levent A, Sekerci M (2004) Russ J Coord Chem 30:655

    Article  Google Scholar 

  30. Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  31. Mostafa MM, El-Hammid A, Shallaby M, El-Asmy AA (1981) Transit Met Chem 6:303

    Article  CAS  Google Scholar 

  32. Cambell MJM (1975) Coord Chem Rev 15:279

    Article  Google Scholar 

  33. Cotton FA, Wilkinson G (1999) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  34. Aboaly MM, Khalil MMH (2001) Spect Lett 34:495

    Article  CAS  Google Scholar 

  35. Anacona JR, Alvarez P (2002) Transit Met Chem 27:856

    Article  CAS  Google Scholar 

  36. Anacona JR, Rodríguez A (2005) Transit Met Chem 30:897

    Article  CAS  Google Scholar 

  37. Anacona JR, Da Silva G (2005) J Chil Chem Soc 50:447

    CAS  Google Scholar 

  38. Anacona JR, Rodriguez H (2009) J Coord Chem 62:2212

    Article  CAS  Google Scholar 

  39. Anacona JR, Patiño C (2009) J Coord Chem 62:613

    Article  CAS  Google Scholar 

  40. Tweedy BG (1964) Phytopathology 55:910

    Google Scholar 

  41. Georgopapadakou NH (1993) Antimicrob Agents Chemother 37:2045

    Article  CAS  Google Scholar 

  42. Flaschka HA (1964) EDTA titrations. Pergamon Press, New York

    Google Scholar 

  43. Marquez VE (1986) Ph.D. thesis, Cambridge University, Cambridge

  44. Sivakumar B, Parthasarathy K, Murugan R, Jeyasudhan R, Murugan S, Savanghdar RJ (2013) Sci Pharm 81:933

    Article  CAS  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador PA, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

Download references

Acknowledgments

We are grateful to Comision de Investigación from the Universidad de Oriente (UDO) and Universidad de Playa Ancha (UPLA) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Anacona.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anacona, J.R., Calvo, G. & Camus, J. Tetradentate hydrazone metal complexes derived from cefazolin and 2,6-diacetylpyridine hydrazide: synthesis, characterization, and antibacterial activity. Monatsh Chem 147, 725–733 (2016). https://doi.org/10.1007/s00706-015-1585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1585-6

Keywords

Navigation