Skip to main content

Advertisement

Log in

How do the preparation methods impact the kinetic parameters of the two Co/Ni/Al2O3 nanocatalysts in Fischer–Tropsch process?

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The influence of the preparation methods on the kinetics of Fischer–Tropsch (FT) synthesis in a fixed-bed reactor is investigated by kinetic tests employing two 80 %Co/20 %Ni/Al2O3 catalysts prepared through: (a) co-gelling support and cobalt, as well as nickel (SG), and (b) impregnating cobalt and nickel with sol–gel derived support (IM-SG). The kinetics for both the catalysts is developed on the basis of Langmuir–Hinshelwood–Hougen–Watson (LHHW) type models at the same range: T = 200–250 °C, P = 1–10 bar, gas hourly space velocity (GHSV) = 4200 h−1 and H2/CO mole ratio of 1/1–3/1. According to the enolic and carbide mechanisms, eight kinetic expressions of the CO consumption rate have been tested. The achieved best fitted model is subject to a good correlation between experimental and theoretical data; and the kinetic parameters are estimated by the use of Levenberg–Marquardt algorithm. Kinetic parameters such as rate constant (k) and activation energy (E a) suggest that the preparation method remarkably impact the FT behavior. The IM-SG sample was selected as the better catalyst due to a higher reaction rate and less activation energy comparing with the SG catalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pirola C, Scavini M, Galli F, Vitali S, Comazzi A, Manenti F, Ghigna P (2014) Fuel 132:62

    Article  CAS  Google Scholar 

  2. Fu T, Jiang Y, Lv J, Li Z (2013) Fuel Process Technol 110:141

    Article  CAS  Google Scholar 

  3. Traa Y (2010) Chem Commun 46:2175

    Article  CAS  Google Scholar 

  4. Höök M, Aleklett K (2010) Int J Energ Res 34:848

    Article  Google Scholar 

  5. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL (2001) Fuel Process Technol 71:139

    Article  CAS  Google Scholar 

  6. Yao N, Xiong G, Zhang Y, He M, Yang W (2001) Catal Today 68:97

    Article  CAS  Google Scholar 

  7. Liu K, Suo H, Zhang C, Xu J, Yang Y, Xiang H, Li YW (2010) Catal Commun 12:137

    Article  CAS  Google Scholar 

  8. Madikizela-Mnqanqeni NN, Coville NJ (2007) Appl Catal A Gen 317:195

    Article  CAS  Google Scholar 

  9. Li H, Wang J (2004) Chem Eng Sci 59:4861

    Article  CAS  Google Scholar 

  10. Castillo S, Morán-Pineda M, Molina V, Gómez R, López T (1998) Appl Catal B- Environ 15:203

    Article  CAS  Google Scholar 

  11. Jacobs G, Das TK, Zhang YQ, Li JL, Racoillet G, Davis BH (2002) Appl Catal 233:263

    Article  CAS  Google Scholar 

  12. Bono MS Jr, Anderson AM, Carroll MK (2010) J Sol-Gel Sci Technol 53:216

    Article  CAS  Google Scholar 

  13. Okabe K, Li X, Matsuzaki T, Arakawa H (2000) J Sol-Gel Sci Technol 19:519

    Article  CAS  Google Scholar 

  14. Wang S, Yin Q, Guo J, Ru B, Zhu L (2013) Fuel 108:597

    Article  CAS  Google Scholar 

  15. Wang T, Li H, Yang Y, Xiang H, Li Y (2014) Fuel Proces Technol 118:117

    Article  Google Scholar 

  16. Arai H, Mitsuishi K, Seiyama T (1984) Chem Lett 8:1291

    Article  Google Scholar 

  17. Jothimurugesan K, Gangwal SK (1998) Ind Eng Chem Res 37:1181

    Article  CAS  Google Scholar 

  18. Loosdrecht J, Kraan AM, Dillen AJ, Geus JW (1996) Catal Lett 41:27

    Article  Google Scholar 

  19. Amelse JA, Schwartz LM, Butt JB (1981) J Catal 72:95

    Article  CAS  Google Scholar 

  20. Unmuth EE, Schwartz LH, Butt JB (1980) J Catal 63:404

    Article  CAS  Google Scholar 

  21. Arsalanfar M, Mirzaei AA, Atashi H, Bozorgzadeh HR, Vahid S, Zare A (2012) Fuel Process Technol 96:150

    Article  CAS  Google Scholar 

  22. Xiong H, Zhang Y, Wang S, Li J (2005) Catal Commun 6:512

    Article  CAS  Google Scholar 

  23. Mishra AK, Bandyopadhyay S, Das D (2012) Mater Res Bull 47:2288

    Article  CAS  Google Scholar 

  24. Petitto SC, Langell MA (2004) J Vac Sci Technol 22:1690

    Article  CAS  Google Scholar 

  25. Tan BJ, Klabunde KJ, Sherwood PMA (1991) J Am Chem Soc 113:855

    Article  CAS  Google Scholar 

  26. Karaca H, Hong J, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Hortmann K, Safonova OV, Khodakov AY (2010) Chem Commun 46:788

    Article  CAS  Google Scholar 

  27. Chen I, Chen FL (1990) Ind Eng Chem Res 29:534

    Article  CAS  Google Scholar 

  28. Fujieda S, Shinoda K, Suzuki S, Jeyadevan B (2012) Mater Trans 10:1716

    Article  Google Scholar 

  29. Ji L, Lin J, Zeng HC (2000) J Phys Chem B 104:1783

    Article  CAS  Google Scholar 

  30. Zvezdinskaya LV, Mitrokhin VA, Delitsin IS (1986) Izv Akad Nauk SSSR. Ser Geol 10:137

    Google Scholar 

  31. Khodakov AY, Lynch J, Bazin D, Rebours B, Zanier N, Moisson B, Chaumette P (1997) J Catal 168:16

    Article  CAS  Google Scholar 

  32. Kang SH, Ryu JH, Kim JH, Prasad PSS, Bae JW, Cheon JY (2011) Catal Lett 141:1464

    Article  CAS  Google Scholar 

  33. Liu Y, Chen J, Zhang J (2007) Chin J Chem Eng 15:63

    Article  CAS  Google Scholar 

  34. Lόnyi F, Valyon J (2001) Microporous Mesoporous Mater 47:293

    Article  Google Scholar 

  35. Zhang J, Chen J, Ren J, Li Y, Sun Y (2003) Fuel 82:581

    Article  CAS  Google Scholar 

  36. Pour AN, Shahri SMK, Zamani Y, Irani M, Tehrani S (2008) J Natur Gas Chem 17:242

    Article  CAS  Google Scholar 

  37. Jacobs G, Patterson PM, Das T, Luo M, Davis B (2004) App Catal A: Gen 270:65

    Article  CAS  Google Scholar 

  38. Bartholomew CH (2001) App Catal A: Gen 212:17

    Article  CAS  Google Scholar 

  39. Visconti CG, Tronconi E, Lietti L, Zennaro R, Forzatti P (2007) Chem Eng Sci 62:5338

    Article  CAS  Google Scholar 

  40. Botao T, Jie C, Haijun W, Jiqing L, Shaocheng Z, Ya L, Ying L, Xiaohui Chin G (2008) J Catal 28:687

  41. Yang J, Liu Y, Chang J, Wang Y, Bai L, Xu L, Xiang H, Li Y, Zhong B (2003) Ind Eng Chem Res 42:5066

    Article  CAS  Google Scholar 

  42. Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch Synthesis and Related Synthesis. John Wiley, New York

    Google Scholar 

  43. Kummer JT, Podgurski HH, Spencer WB, Emmett PH (1951) J Am Chem Soc 73:564

    Article  CAS  Google Scholar 

  44. Spadaro L, Arenaa F, Granados ML, Ojedac M, Fierro JLG, Frusteri F (2005) J Catal 234:451

    Article  CAS  Google Scholar 

  45. Van Steen E, Schulz H (1999) Appl Catal A: Gen 186:309

    Article  Google Scholar 

  46. Zennaro R, Tagliabue M, Bartholomew CH (2000) Catal Today 58:309

    Article  CAS  Google Scholar 

  47. Yates IC, Satterfield CN (1991) Energy Fuels 5:168

    Article  CAS  Google Scholar 

  48. Das TK, Conner WA, Li J, Jacobs G, Dry ME, Davis BH (2005) Energy Fuels 19:1430

    Article  CAS  Google Scholar 

  49. Nikparsa P, Mirzaei AA, Atashi H (2014) J Fuel ChemTechnol 42:710

    Article  CAS  Google Scholar 

  50. Ma W, Jacobs G, Sparks DE, Gnanamani MK, Pendyala VRR, Yen CH, Klettlinger JLS, Tomsik TM, Davis HB (2011) Fuel 90:756

    Article  CAS  Google Scholar 

  51. Mansouri M, Atashi H, Tabrizi FF, Mirzaei AA, Mansouri G (2013) Ind Eng Chem 191:177

    Google Scholar 

  52. Sarup B, Wojciechowski BW (1989) Can J Chem Eng 67:620

    Article  CAS  Google Scholar 

  53. Botes FG, Dyk BV, McGregor C (2009) Ind Eng Chem Res 48:10439

    Article  CAS  Google Scholar 

  54. Wojciechowski BW (1988) Catal Rev Sci Eng 30:629

    Article  CAS  Google Scholar 

  55. Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, DeSisto WJ, Frederick BG, Austin RN (2010) Appl Catal A: Gen 388:57

    Article  CAS  Google Scholar 

  56. Saib AM, Claeys M, Van Steen E (2002) Catal Today 71:395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the University of Sistan and Baluchestan (USB) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paria Nikparsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikparsa, P., Mirzaei, A.A. & Atashi, H. How do the preparation methods impact the kinetic parameters of the two Co/Ni/Al2O3 nanocatalysts in Fischer–Tropsch process?. Monatsh Chem 146, 1935–1947 (2015). https://doi.org/10.1007/s00706-015-1506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1506-8

Keywords

Navigation