Skip to main content
Log in

Optimization of dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the analysis of dipyridamole in water and urine samples

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Dispersive liquid–liquid microextraction with high performance liquid chromatography and response surface methodology was developed for preconcentration and determination of dipyridamole in water and urine samples. The effects of different factors on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the process were extraction and disperser solvent volumes, salt effect, sample volume, centrifuge time, centrifuge speed, and extraction time. An orthogonal array design was performed for screening of variables to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized using a fractional factorial design. The optimum experimental conditions found from this statistical evaluation included: sample volume 4 cm3, volume of extraction solvent (chloroform) 60 mm3, volume of disperser solvent (methanol) 0.5 cm3, sodium chloride concentration 2 × 10−4 g cm−3, extraction time 1 min, centrifuge speed 2000 rpm, and centrifuge time 5 min. The method was validated over a concentration range of 4–700 µg dm−3 for urine sample and 0.4–700 µg dm−3 for water sample. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to determine dipyridamole in water and urine samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Javanbakht M, Fathollahi F, Divsar F, Ganjali MR, Norouzi P (2013) Sens Actuat B 182:362

    Article  CAS  Google Scholar 

  2. Zhu G, Ju H, Zheng H (2004) Clin Chim Acta 348:101

    Article  CAS  Google Scholar 

  3. Qin T, Qin F, Li N, Lu S, Liu W, Li F (2010) Chromatogr 24:268

    CAS  Google Scholar 

  4. Deballon C, Guernet M (1988) J Pharm Biomed Anal 6:1045

    Article  CAS  Google Scholar 

  5. Wang N, Xu F, Zhang Z, Yang C, Sun X, Li J (2008) Chromatogr 22:149

    CAS  Google Scholar 

  6. Rosenfeld J, Devereaux D, Buchanan MR, Turpie AGG (1982) J Chromatogr B 231:216

    Article  CAS  Google Scholar 

  7. Prakash K, Kalakuntla RR, Sama JR (2011) Afr J Pharm Pharmacol 5:244

    CAS  Google Scholar 

  8. Chen M, Granvil C, Ji QC, Zhang ZY, Padval MV, Kansra VV (2009) J Pharm Biomed Anal 49:1241

    Article  CAS  Google Scholar 

  9. Shoukry AF, Abdel Ghani NT, Issa YM, Wahdan OA (2001) Anal Lett 34:1689

  10. Ruiz-Medina A, Fernández-de Córdova ML, Molina-Díaz A (2001) Eur J Pharm Sci 13:385

  11. Oshrine B, Malinin A, Pokov A, Dragan A, Hanley D, Serebruany V (2005) Methods Find Exp Clin Pharmacol 27:95

    Article  CAS  Google Scholar 

  12. Murillo Pulgarín JA, Alañón Molina A, Fernández López P (1998) Anal Chim Acta 370:9

  13. Muñoz de la Peña A, Espinosa Mansilla A, Murillo Pulgarín JA, Alañón Molina A, Fernández LP (1999) Talanta 48:1061

  14. Murillo Pulgarin JA, Alanon Molina A, Fernandez Lopez P (1997) Analyst 122:253

  15. Zhi-ming R, Wang-hua Z, Qiu-zhong L, Guo-ping X, Hui-qin Y (2004) Spectrosc Spect Anal 24:278

    Google Scholar 

  16. de Toledo RA, Castilho M, Mazo LH (2005) J Pharm Biomed Anal 36:1113

    Article  Google Scholar 

  17. Yang YF (2001) Chin J Anal Chem 28

  18. Ghoneim M, Tawfik A, Radi A (2002) Anal Bioanal Chem 374:289

    Article  CAS  Google Scholar 

  19. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) J Chromatogr A 1123:1

  20. Xia J, Xiang B, Zhang W (2008) Anal Chim Acta 625:28

    Article  CAS  Google Scholar 

  21. Sereshti H, Karimi M, Samadi S (2009) J Chromatogr A 1216:198

    Article  CAS  Google Scholar 

  22. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1

  23. Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR (2007) Anal Chim Acta 585:305

  24. Fattahi N, Assadi Y, Hosseini MRM, Jahromi EZ (2007) J Chromatogr A 1157:23

    Article  CAS  Google Scholar 

  25. Ebrahimzadeh H, Yamini Y, Kamarei F (2009) Talanta 79:1472

    Article  CAS  Google Scholar 

  26. Ranjbari E, Golbabanezhad-Azizi AA, Hadjmohammadi MR (2012) Talanta 94:116

    Article  CAS  Google Scholar 

  27. Farajzadeh MA, Bahram M, Jönsson JÅ (2007) Anal Chim Acta 591:69

    Article  CAS  Google Scholar 

  28. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, Bergman R (1998) Chemometr Intell Lab Sys 42:3

    Article  CAS  Google Scholar 

  29. Morgan E (1991) Chemometrics: Experimental Design. Wiley, London

    Google Scholar 

  30. Pourbasheer E, Sadafi S, Ganjali MR, Abbasghorbani M (2014) RSC Adv 4:62190

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Payame Noor University of Ardabil for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Pourbasheer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, M., Pourbasheer, E. & Ganjali, M.R. Optimization of dispersive liquid–liquid microextraction combined with high performance liquid chromatography for the analysis of dipyridamole in water and urine samples. Monatsh Chem 146, 1593–1601 (2015). https://doi.org/10.1007/s00706-015-1442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1442-7

Keywords

Navigation