Skip to main content
Log in

Influence of the counteranion on the phenylselenoetherification reaction of nerolidol

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The pyridine-mediated reactions of nerolidol with both PhSe+ and PhSeCl were investigated using two DFT methods. Comparison of the obtained results provides a description of the counterion influence for the first time. As a consequence of very low solvation free energy of the neutral reactants, addition of the phenylselenyl group to the double bond of nerolidol is an endergonic process, and occurs via a transition state to yield an intermediate that undergoes cyclisation. Due to the influence of the counteranion on the positively charged moiety of the reaction system, the activation free energies in the reaction with PhSeCl are significantly larger than those in the reaction with PhSe+. Thus, only the anti pathway is favoured. The lower activation energy required for the formation of less stable cis-5-ethenyl-5-methyl-2-[6-methyl-2-(phenylseleno)hept-5-en-2-yl]tetrahydrofuran confirms that the examined reaction is kinetically controlled.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wesley JW (ed) (1982) Polyether antibiotics naturally occurring ionophores, vols I and II. Marcel Dekker Inc, New York

    Google Scholar 

  2. Huczyński A, Rutkowski J, Borowicz I, Wietrzyk J, Maj E, Brzezinski B (2013) Bioorg Med Chem Lett 23:5053

    Article  Google Scholar 

  3. Postema MHD (1992) Tetrahedron 48:8545

    Article  CAS  Google Scholar 

  4. Miura K, Okajima S, Hondo T, Nakagawa T, Takahashi T, Hosomi A (2000) J Am Chem Soc 122:11348

    Article  CAS  Google Scholar 

  5. Paramathevar N, Namakkal GR (2010) Tetrahedron 66:599

    Article  Google Scholar 

  6. Gálvez E, Sau M, Romea P, Urpí F, Font-Bardia M (2013) Tetrahedron Lett 54:1467

    Article  Google Scholar 

  7. Sakabe N, Goto T, Hirata Y (1977) Tetrahedron 33:3077

    Article  CAS  Google Scholar 

  8. Rebuffat S, Davoust D, Molho L, Molho D (1980) Phytochemistry 19:427

    Article  CAS  Google Scholar 

  9. Padwa A, Hornbuckle SF (1991) Chem Rev 91:263

    Article  CAS  Google Scholar 

  10. Overman LE (1992) Acc Chem Res 25:352

    Article  CAS  Google Scholar 

  11. Fugami K, Oshima K, Utimoto K (1987) Tetrahedron Lett 28:809

    Article  CAS  Google Scholar 

  12. Evans MA, Morken JP (2005) Org Lett 7:3367

    Article  CAS  Google Scholar 

  13. Graudjean JMM, Nicewicz DA (2013) Angew Chem Int Ed 52:3967

    Article  Google Scholar 

  14. Qian H, Han X, Widenhoefer RA (2004) J Am Chem Soc 126:9536

    Article  CAS  Google Scholar 

  15. Dzudza A, Marks TJ (2009) Org Lett 11:1523

    Article  CAS  Google Scholar 

  16. Palmer C, Morra NA, Stevens AC, Bajtos B, Machin BP, Pagenkopf BL (2009) Org Lett 11:5614

    Article  CAS  Google Scholar 

  17. Kang B, Chang S, Decker S, Britton R (2010) Org Lett 12:1716

    Article  CAS  Google Scholar 

  18. Nibret E, Wink M (2010) Phytomedicine 17:911

    Article  CAS  Google Scholar 

  19. Şerbetçi T, Demirci B, Güzel ÇB, Kültür Ş, Ergüven M, Başer KHC (2010) Nat Prod Commun 5:1369

    Google Scholar 

  20. Marques AM, Barreto ALS, Curvelo JAR, Romanos MTV, Soares RMA, Kaplan MAC (2011) Braz J Pharmacog 21:908

    CAS  Google Scholar 

  21. Yang K, Zhou YX, Wang CF, Du SS, Deng ZW, Liu QZ, Liu ZL (2011) Molecules 16:7320

    Article  CAS  Google Scholar 

  22. Yu JQ, Lei JC, Zhang XQ, Yu HD, Tian DZ, Liao ZX, Zou GZ (2011) Food Chem 126:1593

    Article  CAS  Google Scholar 

  23. Mojsilović BM, Bugarčić ZM (2001) Heteroatom Chem 12:475

    Article  Google Scholar 

  24. Bugarčić ZM, Dunkić JD, Mojsilović BM (2004) Heteroatom Chem 15:468

    Article  Google Scholar 

  25. Bugarčić ZM, Mojsilović BM (2004) Heteroatom Chem 15:146

    Article  Google Scholar 

  26. Bugarčić ZM, Mojsilovic BM, Divac VM (2007) J Mol Cat A Chem 272:288

    Article  Google Scholar 

  27. Divac VM, Rvović MD, Bugarčić ZM (2008) Monatsh Chem 139:1373

    Article  CAS  Google Scholar 

  28. Bugarčić ZM, Petrović BV, Rvović MD (2008) J Mol Cat A Chem 287:171

    Article  Google Scholar 

  29. Rvović MD, Divac VM, Puchta R, Bugarčić ZM (2011) J Mol Mod 17:1251

    Article  Google Scholar 

  30. Divac VM, Puchta R, Bugarčić ZM (2012) J Phys Chem A 116:7783

    Article  CAS  Google Scholar 

  31. Rvović MD, Divac VM, Janković NŽ, Bugarčić ZM (2013) Monatsh Chem 144:1227

    Article  Google Scholar 

  32. Divac VM, Rvović MD, Bugarčić ZM (2013) React kinet. Mech Catal 110:309

    CAS  Google Scholar 

  33. Janković N, Marković S, Bugarčić Z (2014) Monatsh Chem 145:1287

    Article  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar GD (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  38. Zhao Y, Truhlar GD (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  39. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This fork was supported in part by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants 172011 and 172016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Marković.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marković, S., Janković, N. & Bugarčić, Z. Influence of the counteranion on the phenylselenoetherification reaction of nerolidol. Monatsh Chem 146, 275–282 (2015). https://doi.org/10.1007/s00706-014-1361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1361-z

Keywords

Navigation