Skip to main content
Log in

The hydrogen bond interactions in glycine–nitrosamine complexes: a DFT study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The strong and directional hydrogen bonding interaction between glycine (G) and nitrosamine (NA) have been investigated using B3LYP and B3PW91 methods with a wide range of basis sets. With four preferential interaction sites in the vicinity of the glycine, eight different conformations (GNA1-8) with two intermolecular hydrogen bonds [NHNA···N(O)G and O(N)NA···HXG (X = O, N, C)] were found on the potential energy surface. The influence of the hydrogen bond on the molecular and topological properties, as well as nuclear magnetic resonance one- and two-bond spin–spin coupling constants in the gas phase was investigated. The most stable complexes labeled GNA1 and GNA2 are formed in S1 site. Natural bond orbital analysis shows that in the most stable complexes GNA1 and GNA2 the charge transfer takes place from NA to G, whereas, the reverse happens in other complexes. The results predict that in all complexes, the LPO(N)NA → σ*(X–H)Gly (X = O, N, C) and LPN(O)Gly → σ*(N–H)NA donor–acceptor interactions are the most important interactions. Atom in molecule analysis confirms that all hydrogen bonds have partially covalent nature. The covalent nature of proton donor groups decreases upon complexation. The relationship between spin–spin coupling constant (1h JH···Y and 2h JH···Y) with interaction energy and electronic density at corresponding hydrogen bond critical points and H-bonds distances are investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaidyanathan R, Natrajan S, Rao CNR (2002) J Mol Struct 608:123

    Article  Google Scholar 

  2. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New York

    Google Scholar 

  3. Domagała M, Matczak P, Palusiak M (2012) Comput Theor Chem 998:26

    Article  Google Scholar 

  4. Wang W, Zhang Y, Huang K (2005) Chem Phys Lett 411:439

    Article  CAS  Google Scholar 

  5. Harmon KM, Pillar S (2005) J Mol Struct 740:75

    Article  CAS  Google Scholar 

  6. Jeffery GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  7. Sahu PK, Chaudhari A, Lee SL (2004) Chem Phys Lett 386:351

    Article  CAS  Google Scholar 

  8. Wang W, Pu X, Zheng W, Wong NB, Tian A (2003) J Mol Struct 626:127

    Article  CAS  Google Scholar 

  9. Balabin R (2010) J Phys Chem Lett 1:20

    Article  CAS  Google Scholar 

  10. Espinoza C, Szczepanski J, Vala M, Polfer N (2010) J Phys Chem A 114:5919

    Article  CAS  Google Scholar 

  11. Gomez-Zavaglia A, Fausto R (2003) Phys Chem Chem Phys 5:3154

    Article  CAS  Google Scholar 

  12. Matè B, Rodriguez-Lazcano Y, Galvèz O, Tanarro I, Escribano R (2011) Phys Chem Chem Phys 13:12268

    Article  Google Scholar 

  13. Kulkarni AD, Rai D, Gejji SP, Bartolotti LJ, Pathak RK (2013) Int J Quantum Chem 113:1325

    Article  CAS  Google Scholar 

  14. Kasalova V, Allen W, Schaefer H III, Czinki E, Csaszar A (2007) J Comput Chem 28:1373

    Article  CAS  Google Scholar 

  15. Balabin R (2009) Chem Phys Lett 479:195

    Article  CAS  Google Scholar 

  16. Meng K, Wang J (2011) Phys Chem Chem Phys 13:2001

    Article  CAS  Google Scholar 

  17. Ramaekers R, Pajak J, Lambie B, Maes G (2004) J Chem Phys 120:4182

    Article  CAS  Google Scholar 

  18. Meng X-J, Zhao H-L, Ju X-S (2012) Comput Theor Chem 1001:26

    Article  CAS  Google Scholar 

  19. Tian SX (2004) J Phys Chem B 108:20388

    Article  CAS  Google Scholar 

  20. Wu Y, Zhang LN, Li JR, Zheng XL, Hong M (2013) Can J Chem 91:143

    Article  CAS  Google Scholar 

  21. Hao Z, Hu YJ, Xing D (2009) Chin J Chem Phys 22:577

    Article  Google Scholar 

  22. Murad F (1999) Angew Chem Int Ed 38:1856

    Article  CAS  Google Scholar 

  23. Jiang P, Ximei Q, Chunhui L, Chunhui Q, Dianxun W (1997) Chem Phys Lett 277:508

    Article  CAS  Google Scholar 

  24. Biaudet H, Mavelle T, Debry G (1994) Food Chem Toxicol 32:417

    Article  CAS  Google Scholar 

  25. Sen NP, Seaman S (1981) J Agric Food Chem 29:787

    Article  CAS  Google Scholar 

  26. Yurchenko S, Molder U (2005) Food Chem 89:455

    Article  CAS  Google Scholar 

  27. Gadbois DF, Ravesi EM, Lundstrom RC, Maney RS (1975) J Agric Food Chem 23:665

    Article  CAS  Google Scholar 

  28. Yurchenko S, Molder U (2006) Food Chem 96:325

    Article  CAS  Google Scholar 

  29. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  30. Hobza P, Spirko V, Selzle HL, Schlag EW (1998) J Phys Chem A 102:2501

    Article  CAS  Google Scholar 

  31. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  32. Koch U, Popelier PLA (1995) J Phys Chem 99:9747

    Article  CAS  Google Scholar 

  33. Grabowski SJ (2006) Hydrogen bonding—new insights. Springer, The Netherlands

    Book  Google Scholar 

  34. Granovsky AA (2009) PC Gamess version 7.1.G. Available at http://classic.chem.msu.su/gran/gamess/index.html

  35. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  36. Glendening DE, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1. Gaussian Inc., Pittsburgh, PA

  37. Biegler-Knig F, Schnbohm J, Bayles D (2001) J Comput Chem 22:54

    Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Sirjan University of Technology for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batoul Makiabadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makiabadi, B., Kian, H. The hydrogen bond interactions in glycine–nitrosamine complexes: a DFT study. Monatsh Chem 146, 69–78 (2015). https://doi.org/10.1007/s00706-014-1304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1304-8

Keywords

Navigation