Skip to main content
Log in

Theoretical study on the interaction of the ammonium cation with decamethylcucurbit[5]uril

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

By using quantum mechanical density functional theory (DFT) calculations, the most probable structure of the decamethylcucurbit[5]uril–NH4 + cationic complex species was derived. In this complex, the ammonium cation NH4 + is bound by one linear hydrogen bond and two bifurcated hydrogen bonds to the five carbonyl oxygens of the parent macrocyclic receptor. The interaction energy of the resulting cationic complex was found to be −372.0 kJ mol−1, which confirms the formation of this complex species.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  2. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621

    Article  CAS  Google Scholar 

  3. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959

    Article  CAS  Google Scholar 

  4. Freeman WA, Mock WL, Shih NY (1981) J Am Chem Soc 103:7367

    Article  CAS  Google Scholar 

  5. Mock WL, Shih NY (1983) J Org Chem 48:3618

    Article  CAS  Google Scholar 

  6. Mock WL, Shih NY (1986) J Org Chem 51:4440

    Article  CAS  Google Scholar 

  7. Mock WL, Shih NY (1988) J Am Chem Soc 110:4706

    Article  CAS  Google Scholar 

  8. Mock WL, Shih NY (1989) J Am Chem Soc 111:2697

    Article  CAS  Google Scholar 

  9. Isobe H, Tomita N, Lee JW, Kim HJ, Kim K, Nakamura E (2000) Angew Chem Int Ed 39:4257

    Article  CAS  Google Scholar 

  10. Isobe H, Sota S, Lee JW, Kim HJ, Kim K, Nakamura E (2005) Chem Commun 1549

  11. Tan Y, Choi S, Lee JW, Ko YH, Kim K (2002) Macromolecules 35:7161

    Article  CAS  Google Scholar 

  12. Márquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806

    Article  Google Scholar 

  13. Buschmann HJ, Mutihac L, Mutihac RC, Schollmeyer E (2005) Thermochim Acta 430:79

    Article  CAS  Google Scholar 

  14. Buschmann HJ, Schollmeyer E, Mutihac L (2003) Thermochim Acta 399:203

    Article  CAS  Google Scholar 

  15. Makrlík E, Vaňura P (2006) Monatsh Chem 137:157

    Article  Google Scholar 

  16. Makrlík E, Vaňura P (2006) Monatsh Chem 137:1185

    Article  Google Scholar 

  17. Dybal J, Makrlík E, Vaňura P (2007) Monatsh Chem 138:541

    Article  CAS  Google Scholar 

  18. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2007) Monatsh Chem 138:735

    Article  Google Scholar 

  19. Dybal J, Makrlík E, Vaňura P, Selucký P (2007) Monatsh Chem 138:1239

    Article  CAS  Google Scholar 

  20. Dybal J, Makrlík E, Vaňura P, Budka J (2008) Monatsh Chem 139:1175

    Article  CAS  Google Scholar 

  21. Dybal J, Makrlík E, Budka J, Vaňura P (2008) Monatsh Chem 139:1353

    Article  CAS  Google Scholar 

  22. Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:29

    Article  Google Scholar 

  23. Makrlík E, Dybal J, Budka J, Vaňura P (2009) Monatsh Chem 140:1155

    Article  Google Scholar 

  24. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2010) Monatsh Chem 141:19

    Article  Google Scholar 

  25. Makrlík E, Čajan M, Budka J, Vaňura P (2011) Monatsh Chem 142:5

    Article  Google Scholar 

  26. Makrlík E, Vaňura P, Budka J (2009) Monatsh Chem 140:583

    Article  Google Scholar 

  27. Toman P, Makrlík E, Vaňura P, Kašička V, Rathore R (2010) Monatsh Chem 141:737

    Article  CAS  Google Scholar 

  28. Makrlík E, Toman P, Vaňura P (2012) Monatsh Chem 143:881

    Article  Google Scholar 

  29. Zhang XX, Krakowiak KE, Xue G, Bradshaw JS, Izatt RM (2000) Ind Eng Chem Res 39:3516

    Article  CAS  Google Scholar 

  30. Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536

    Article  Google Scholar 

  31. Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419

    Article  Google Scholar 

  32. Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387

    Article  Google Scholar 

  33. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487

    Article  Google Scholar 

  34. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236

    Article  Google Scholar 

  35. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  36. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  37. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

  38. Toman P, Makrlík E, Vaňura P (2013) Monatsh Chem 144:813

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  40. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, Wallingford

Download references

Acknowledgments

This work was supported by the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society”, and by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bureš, M., Makrlík, E. & Vaňura, P. Theoretical study on the interaction of the ammonium cation with decamethylcucurbit[5]uril. Monatsh Chem 145, 1243–1246 (2014). https://doi.org/10.1007/s00706-014-1182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1182-0

Keywords

Navigation