Skip to main content

Advertisement

Log in

The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lodish H, Berk A, Matsudaira P et al (2003) Molecular Cell Biology, 5th edn. W.H.Freeman, New York, pp 701–742

    Google Scholar 

  2. Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans- Golgi network. Nat Rev Mol Cell Biol 7:568–579

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer SR (2001) Membrane transport: retromer to the rescue. Curr Biol 11:R109–R111

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh P, Dahms NM, Kornfeld S (2003) Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–213

    Article  CAS  PubMed  Google Scholar 

  5. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  CAS  PubMed  Google Scholar 

  6. Kuwana T, Peterson PA, Karlsson L (1998) Exit of major histocompatibility complex class II—invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc Natal Acad Sci 95:1056–1061

    Article  CAS  Google Scholar 

  7. Bosshart H, Humphrey J, Deignan E, Davidson J, Drazba J et al (1994) The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol 126:1157–1172

    Article  CAS  PubMed  Google Scholar 

  8. Falnes PO, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12:407–413

    Article  CAS  PubMed  Google Scholar 

  9. Johannes L, Pezo V, Mallard F, Tenza D, Wiltz A et al (2003) Effects of HIV-1 Nef on retrograde transport from the plasma membrane to the endoplasmic reticulum. Traffic 4:323–332

    Article  CAS  PubMed  Google Scholar 

  10. Dales S (1975) Part VII. Microtubules and cell surface organization: involvement of the microtubule in replication cycle of animal viruses. Ann NY Acad Sci 253:440–444

    Article  CAS  PubMed  Google Scholar 

  11. Cheung TK, Poon LL (2007) Biology of influenza A virus. Ann NY Acad Sci 1102:1–25

    Article  CAS  PubMed  Google Scholar 

  12. Lamb R (1983) The influenza virus RNA segments and their encoded proteins. Genetics of influenza viruses. Springer, New York, pp 21–69

    Google Scholar 

  13. Fischer WB, Hsu HJ (2011) Viral channel forming proteins: modeling the target. BBA Biomembr 1808:561–571

    Article  CAS  Google Scholar 

  14. Pinto LH, Lamb RA (2006) The M2 proton channels of influenza A & B viruses. J Biol Chem 281:8997–9000

    Article  CAS  PubMed  Google Scholar 

  15. Henkel JR, Apodaca G, Altschuler Y, Hardy S, Weisz OA (1998) Selective perturbation of apical membrane traffic by expression of influenza M2, an acid-activated ion channel, in polarized Madin–Darby canine kidney cells. Mol Biol Cell 9:2477–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA (2002) Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 76:1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gannagé M, Dormann D, Albrecht R, Dengjel J, Torossi T et al (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6:367–380

    Article  PubMed  PubMed Central  Google Scholar 

  19. Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW et al (2013) Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. AM J Physiol Lung C 304:L582–L592

    Article  CAS  Google Scholar 

  20. Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  CAS  PubMed  Google Scholar 

  21. Ye Y, Meyer HH, Rapoport TA (2001) The AAA-ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656

    Article  CAS  PubMed  Google Scholar 

  22. Surjit M, Jameel S, Lal SK (2007) Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. J Virol 81:3339–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Surjit M, Varshney B, Lal SK (2012) The ORF2 glycoprotein of hepatitis E virus inhibits cellular NF-kappa B activity by blocking ubiquitination mediated proteasomal degradation of I-kappa B alpha in human hepatoma cells. BMC Biochem 13:7–14

    Article  CAS  PubMed  Google Scholar 

  24. Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2:S3007

    Article  Google Scholar 

  25. Saraste J, Palade GE, Farquhar MG (1987) Antibodies to rat pancreas Golgi subfractions: identification of a 58-kD cis-Golgi protein. J Cell Biol 105:2021–2029

    Article  CAS  PubMed  Google Scholar 

  26. Rojas R, Kametaka S, Haft CR, Bonifacino JS (2007) Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 27:1112–1124

    Article  CAS  PubMed  Google Scholar 

  27. Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ et al (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54

    Article  CAS  PubMed  Google Scholar 

  28. Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose regulated proteins. Nature 332:462–464

    Article  CAS  PubMed  Google Scholar 

  30. Han YH, Moon HJ, You BR, Park WH (2009) The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep 22:215–221

    CAS  PubMed  Google Scholar 

  31. Taubenberger JK, Morens DM (2010) Influenza: the once and future pandemic. Public Health Rep 3:16–26

    Google Scholar 

  32. Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124:729–740

    Article  CAS  PubMed  Google Scholar 

  33. Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. A. Rapoport and Dr. S. Jameel for providing us the plasmid constructs. Our special thanks also go to R. Kumar and P. Kumar for assistance in virus infection, confocal microscopy and cell culture experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Lal.

Additional information

S. Bhowmick: Deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmick, S., Chakravarty, C., Sellathamby, S. et al. The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation. Arch Virol 162, 919–929 (2017). https://doi.org/10.1007/s00705-016-3153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3153-8

Keywords

Navigation