Skip to main content

Advertisement

Log in

Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vector transmission is an important part of the viral infection cycle, yet for many viruses little is known about this process, or how viral sequence variation affects transmission efficacy. Here we examined the effect of substituting genes from the highly transmissible FS577 isolate of citrus tristeza virus (CTV) in to the poorly transmissible T36-based infectious clone. We found that introducing p65 or p61 sequences from FS577 significantly increased transmission efficacy. Interestingly, replacement of both genes produced a greater increase than either gene alone, suggesting that CTV transmission requires the concerted action of co-evolved p65 and p61 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ng JCK, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  CAS  PubMed  Google Scholar 

  2. Ng JC, Zhou JS (2015) Insect vector–plant virus interactions associated with non-circulative, semi-persistent transmission: current perspectives and future challenges. Curr Opin Microbiol 15:48–55

    Google Scholar 

  3. Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    Article  PubMed  Google Scholar 

  4. Uzest M, Gargani D, Dombrovsky A, Cazevieille C, Cot D, Blanc S (2010) The “acrostyle”: a newly described anatomical structure in aphid stylets. Arthropod Struct Dev 39:221–229

    Article  PubMed  Google Scholar 

  5. Perry KL, Zhang L, Palukaitis P (1998) Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the Aphids Myzus persicae and Aphis gossypii. Virology 242(1):204–210

    Article  CAS  PubMed  Google Scholar 

  6. Blanc S, López-Moya JJ, Wang R, García-Lampasona S, Thornbury DW, Pirone TP (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231(1):141–147

    Article  CAS  PubMed  Google Scholar 

  7. Blanc S, Ammar ED, Garcia-Lampasona S, Dolja VV, Llave C, Baker J, Pirone TP (1998) Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J Gen Virol 79:3119–3122

    Article  CAS  PubMed  Google Scholar 

  8. Moreno P, Ambros S, Albiach-Marti MR, Guerri J, Pena L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  CAS  PubMed  Google Scholar 

  9. Harper SJ (2013) Citrus tristeza virus: Evolution of complex and varied genotypic groups. Front Microbiol 4:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Killiny N, Harper SJ, Alfaress S, El-Mohtar C, Dawson WO (2016) Minor coat and heat-shock proteins are involved in binding of Citrus tristeza virus to the foregut of its aphid vector. App Env Microbiol, Toxoptera citricida. doi:10.1128/AEM.01914-16

    Google Scholar 

  11. Tian T, Rubio L, Yeh HH, Crawford B, Falk BW (1999) Lettuce infectious yellows virus: in vitro acquisition analysis using partially purified virions and the whitefly Bemisia tabaci. J Gen Virol 80:1111–1117

    Article  CAS  PubMed  Google Scholar 

  12. Chen AY, Walker GP, Carter D, Ng JC (2011) A virus capsid component mediates virion retention and transmission by its insect vector. Proc Natl Acad Sci 108:16777–16782

    Article  PubMed  PubMed Central  Google Scholar 

  13. Satyanarayana T, Gowda S, Ayllón MA, Dawson WO (2004) Closterovirus bipolar virion: Evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc Natl Acad Sci 101:799–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harper SJ, Cowell SJ, Robertson CJ, Dawson WO (2014) Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology 460:91–99

    Article  PubMed  Google Scholar 

  15. Satyanarayana T, Gowda S, Boyko VP, Albiach-Marti MR, Mawassi M, Navas-Castillo J, Karasev A, Dolja V, Hilf ME, Lewandowski DJ, Moreno P, Bar-Joseph M, Dawson WO (1999) An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc Natl Acad Sci 96:7433–7438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gowda S, Satyanarayana T, Robertson CJ, Garnsey SM, Dawson WO (2005) Infection of citrus plants with virions generated in Nicotiana benthamiana plants agroinfiltrated with a binary vector based Citrus tristeza virus. 16th Conference of the International Organization of Citrus Virologists, IOCV, Riverside, CA, pp 23–33

  17. Fernández-Calvino L, Goytia E, López-Abella D, Giner A, Urizarna M, Vilaplana L, López-Moya JJ (2010) The helper-component protease transmission factor of tobacco etch potyvirus binds specifically to an aphid ribosomal protein homologous to the laminin receptor precursor. J Gen Virol 91:2862–2873

    Article  PubMed  Google Scholar 

  18. Stewart LR, Medina V, Tian T, Turina M, Falk BW, Ng JC (2010) A mutation in the Lettuce infectious yellows virus minor coat protein disrupts whitefly transmission but not in planta systemic movement. J virol 84:12165–12173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chare ER, Holmes EC (2004) Selection pressures in the capsid genes of plant RNA viruses reflect mode of transmission. J Gen Virol 85(10):3149–3157

    Article  CAS  PubMed  Google Scholar 

  20. Sako N (1980) Loss of aphid transmissibility of turnip mosaic virus. Phytopathology 70(7):647–649

    Article  Google Scholar 

  21. Dolja VV, Kreuze JF, Valkonen JPT (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51

    Article  CAS  PubMed  Google Scholar 

  22. Alzhanova DV, Prokhnevsky AI, Peremyslov VV, Dolja VV (2007) Virion tails of Beet yellows virus: coordinated assembly by three structural proteins. Virology 359:220–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the assistance of C. Robertson and R. McCoy for virus propagation, E. Carter for sampling of plants, and C.T. Bierman for performing ELISA assays. This research was supported by grants from Southern Gardens Citrus, by an endowment from the J. R. and Addie S. Graves family, and the UF Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Harper.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. No human or animal subjects were used during this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harper, S.J., Killiny, N., Tatineni, S. et al. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid. Arch Virol 161, 3555–3559 (2016). https://doi.org/10.1007/s00705-016-3070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3070-x

Keywords

Navigation