Skip to main content
Log in

Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE), glycoprotein I (gI), and Us9 promote efficient anterograde axonal transport of virus from the neuron cytoplasm to the axon terminus. HSV-1 and PRV gE and gI form a heterodimer that is required for anterograde transport, but an association that includes Us9 has not been demonstrated. NS-gE380 is an HSV-1 mutant that has five amino acids inserted after gE residue 380, rendering it defective in anterograde axonal transport. We demonstrated that gE, gI and Us9 form a trimolecular complex in Vero cells infected with NS-gE380 virus in which gE binds to both Us9 and gI. We detected the complex using immunoprecipitation with anti-gE or anti-gI monoclonal antibodies in the presence of ionic detergents. Under these conditions, Us9 did not associate with gE in cells infected with wild-type HSV-1; however, using a nonionic detergent, TritonX-100, an association between Us9 and gE was detected in immunoprecipitates of both wild-type and NS-gE380-infected cells. The results suggest that the interaction between Us9 and gE is weak and disrupted by ionic detergents in wild-type infected cells. We postulate that the tight interaction between Us9 and gE leads to the anterograde spread defect in the NS-gE380 virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang F, Tang W, McGraw HM, Bennett J, Enquist LW et al (2005) Herpes simplex virus type 1 glycoprotein e is required for axonal localization of capsid, tegument, and membrane glycoproteins. J Virol 79:13362–13372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT et al (2005) Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci USA 102:11462–11467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. LaVail JH, Tauscher AN, Sucher A, Harrabi O, Brandimarti R (2007) Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience 146:974–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brittle EE, Reynolds AE, Enquist LW (2004) Two modes of pseudorabies virus neuroinvasion and lethality in mice. J Virol 78:12951–12963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brideau AD, Card JP, Enquist LW (2000) Role of pseudorabies virus Us9, a type II membrane protein, in infection of tissue culture cells and the rat nervous system. J Virol 74:834–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGraw HM, Awasthi S, Wojcechowskyj JA, Friedman HM (2009) Anterograde spread of herpes simplex virus Type 1 requires glycoprotein E and glycoprotein I but not Us9. J Virol 83:8315–8326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ch’ng TH, Enquist LW (2005) Efficient axonal localization of alphaherpesvirus structural proteins in cultured sympathetic neurons requires viral glycoprotein E. J Virol 79:8835–8846

    Article  PubMed  PubMed Central  Google Scholar 

  8. Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66:3032–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Butchi NB, Jones C, Perez S, Doster A, Chowdhury SI (2007) Envelope protein Us9 is required for the anterograde transport of bovine herpesvirus type 1 from trigeminal ganglia to nose and eye upon reactivation. J Neurovirol 13:384–388

    Article  CAS  PubMed  Google Scholar 

  10. Chowdhury SI, Onderci M, Bhattacharjee PS, Al-Mubarak A, Weiss ML et al (2002) Bovine herpesvirus 5 (BHV-5) Us9 is essential for BHV-5 neuropathogenesis. J Virol 76:3839–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Snyder A, Polcicova K, Johnson DC (2008) Herpes simplex virus gE/gI and US9 proteins promote transport of both capsids and virion glycoproteins in neuronal axons. J Virol 82:10613–10624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lyman MG, Curanovic D, Enquist LW (2008) Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts. PLoS Pathogens 4:e1000065

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor MP, Kramer T, Lyman MG, Kratchmarov R, Enquist LW (2012) Visualization of an alphaherpesvirus membrane protein that is essential for anterograde axonal spread of infection in neurons. mBio 3:e00063–e00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGeoch DJ, Dolan A, Donald S, Rixon FJ (1985) Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181:1–13

    Article  CAS  PubMed  Google Scholar 

  15. Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW (2007) Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 81:11363–11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomishima MJ, Enquist LW (2002) In vivo egress of an alphaherpesvirus from axons. Journal of Virology 76:8310–8317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Enquist LW, Tomishima MJ, Gross S, Smith GA (2002) Directional spread of an alpha-herpesvirus in the nervous system. Vet Microbiol 86:5–16

    Article  CAS  PubMed  Google Scholar 

  18. Whealy ME, Card JP, Robbins AK, Dubin JR, Rziha HJ et al (1993) Specific pseudorabies virus infection of the rat visual system requires both gI and gp63 glycoproteins. J Virol 67:3786–3797

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rizvi SM, Raghavan M (2001) An N-terminal domain of herpes simplex virus type Ig E is capable of forming stable complexes with gI. J Virol 75:11897–11901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyborowska J, Bieńkowska-Szewczyk K, Rychłowski M, Van Oirschot JT, Rijsewijk FAM (2000) The extracellular part of glycoprotein E of bovine herpesvirus 1 is sufficient for complex formation with glycoprotein I but not for cell-to-cell spread. Arch Virol 145:333–351

    Article  CAS  PubMed  Google Scholar 

  21. Johnson DC, Feenstra V (1987) Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brideau AD, Banfield BW, Enquist LW (1998) The Us9 gene product of pseudorabies virus, an alphaherpesvirus, is a phosphorylated, tail-anchored type II membrane protein. J Virol 72:4560–4570

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y et al (2005) Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol 79:9325–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brandimarti R, Roizman B (1997) Us9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci USA 94:13973–13978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basu S, Dubin G, Nagashunmugam T, Basu M, Goldstein LT et al (1997) Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J Immunol 158:209–215

    CAS  PubMed  Google Scholar 

  26. Dingwell KS, Brunetti CR, Hendricks RL, Tang Q, Tang M et al (1994) Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68:834–845

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zsak L, Zuckermann F, Sugg N, Ben-Porat T (1992) Glycoprotein gI of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. J Virol 66:2316–2325

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Whitbeck JC, Knapp AC, Enquist LW, Lawrence WC, Bello LJ (1996) Synthesis, processing, and oligomerization of bovine herpesvirus 1 gE and gI membrane proteins. J Virol 70:7878–7884

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Mubarak A, Chowdhury SI (2004) In the absence of glycoprotein I (gI), gE determines bovine herpesvirus type 5 neuroinvasiveness and neurovirulence. J Neurovirol 10:233–243

    Article  CAS  PubMed  Google Scholar 

  30. Chowdhury SI, Lee BJ, Ozkul A, Weiss ML (2000) Bovine herpesvirus 5 glycoprotein E is important for neuroinvasiveness and neurovirulence in the olfactory pathway of the rabbit. J Virol 74:2094–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsujimura K, Yamanaka T, Kondo T, Fukushi H, Matsumura T (2006) Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models. J Vet Med Sci 68:1029–1038

    Article  CAS  PubMed  Google Scholar 

  32. Mijnes JD, Lutters BC, Vlot AC, van Anken E, Horzinek MC et al (1997) Structure-function analysis of the gE-gI complex of feline herpesvirus: mapping of gI domains required for gE-gI interaction, intracellular transport, and cell-to-cell spread. J Virol 71:8397–8404

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishikawa Y, Xuan X, Otsuka H (1998) Identification and characterization of the glycoprotein E and I genes of canine herpesvirus. Virus Res 56:77–92

    Article  CAS  PubMed  Google Scholar 

  34. Balan P, Davis-Poynter N, Bell S, Atkinson H, Browne H et al (1994) An analysis of the in vitro and in vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins gG, gE, gI or the putative gJ. J Gen Virol 75:1245–1258

    Article  CAS  PubMed  Google Scholar 

  35. Han J, Chadha P, Starkey JL, Wills JW (2012) Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail. Proc Natl Acad Sci USA 109:19798–19803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Weeks BS, Sundaresan P, Nagashunmugam T, Kang E, Friedman HM (1997) The herpes simplex virus-1 glycoprotein E (gE) mediates IgG binding and cell-to-cell spread through distinct gE domains. Biochem Biophys Res Commun 235:31–35

    Article  CAS  PubMed  Google Scholar 

  37. Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R et al (1994) Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 68:2478–2485

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Polcicova K, Goldsmith K, Rainish BL, Wisner TW, Johnson DC (2005) The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors. J Virol 79:11990–12001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brideau AD, Eldridge MG, Enquist LW (2000) Directional transneuronal infection by pseudorabies virus is dependent on an acidic internalization motif in the Us9 cytoplasmic tail. J Virol 74:4549–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kramer T, Enquist LW (2013) Directional spread of alphaherpesviruses in the nervous system. Viruses 5:678–707

    Article  PubMed  PubMed Central  Google Scholar 

  41. Daniel GR, Sollars PJ, Pickard GE, Smith GA (2015) Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism. J Virol 89:8088–8091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin X, Lubinski JM, Friedman HM (2004) Immunization strategies to block the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 78:2562–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedman HM, Macarak EJ, MacGregor RR, Wolfe J, Kefalides NA (1981) Virus infection of endothelial cells. J Infect Dis 143:266–273

    Article  CAS  PubMed  Google Scholar 

  44. Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS et al (1998) In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J Virol 72:5351–5359

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Awasthi S, Alwine JC (2003) Association of polyadenylation cleavage factor I with U1 snRNP. RNA 9:1400–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci USA 96:742–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kramer T, Greco TM, Taylor MP, Ambrosini AE, Cristea IM et al (2012) Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons. Cell Host Microbe 12:806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kratchmarov R, Kramer T, Greco TM, Taylor MP, Ch’ng TH et al (2013) Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons. J Virol 87:9431–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diefenbach RJ, Davis A, Miranda-Saksena M, Fernandez MA, Kelly BJ et al (2016) The basic domain of herpes simplex virus 1 pUS9 recruits kinesin-1 to facilitate egress from neurons. J Virol 90:2102–2111

    Article  CAS  PubMed Central  Google Scholar 

  50. Arnold T, Linke D (2007) Phase separation in the isolation and purification of membrane proteins. Biotechniques 43:427–430, 432, 434 passim

  51. O’Connor JP, Alwine JC, Lutz CS (1997) Identification of a novel, non-snRNP protein complex containing U1A protein. RNA 3:1444–1455

    PubMed  PubMed Central  Google Scholar 

  52. Chamberlain LH (2004) Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559:1–5

    Article  CAS  PubMed  Google Scholar 

  53. Lichtenberg D, Ahyayauch H, Alonso A, Goñi FM (2013) Detergent solubilization of lipid bilayers: a balance of driving forces. Trends Biochem Sci 38:85–93

    Article  CAS  PubMed  Google Scholar 

  54. Dailey HA, Strittmatter P (1978) Structural and functional properties of the membrane binding segment of cytochrome b5. J Biol Chem 253:8203–8209

    CAS  PubMed  Google Scholar 

  55. Brideau AD, del Rio T, Wolffe EJ, Enquist LW (1999) Intracellular trafficking and localization of the pseudorabies virus Us9 type II envelope protein to host and viral membranes. J Virol 73:4372–4384

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Harrison SC (2008) The pH sensor for flavivirus membrane fusion. J Cell Biol 183:177–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-San Martin C, Liu CY, Kielian M (2009) Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17:514–521

    Article  CAS  PubMed  Google Scholar 

  58. Farnsworth A, Johnson DC (2006) Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread. J Virol 80:3167–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lyman MG, Kemp CD, Taylor MP, Enquist LW (2009) Comparison of the pseudorabies virus Us9 protein with homologs from other veterinary and human alphaherpesviruses. J Virol 83:6978–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang X, Miller W (1991) A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12:337–357

    Article  Google Scholar 

Download references

Acknowledgments

We thank Toni Minson, Gary Cohen and Roselyn Eisenberg for providing reagents. We also thank the University of Pennsylvania Confocal Microscopy Core facility for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sita Awasthi.

Ethics declarations

This study was funded by R01-AI104854 to HF.

Conflict of interest

Authors SA and HF declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, S., Friedman, H.M. Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9. Arch Virol 161, 3203–3213 (2016). https://doi.org/10.1007/s00705-016-3028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3028-z

Keywords

Navigation