Skip to main content

Advertisement

Log in

Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Measles virus and mumps virus (MeV and MuV) are enveloped RNA viruses used for production of live attenuated vaccines for prophylaxis of measles and mumps disease, respectively. For biotechnological production of and basic research on these viruses, the preparation of highly purified and infectious viruses is a prerequisite, and to meet that aim, knowledge of their stability and biophysical properties is crucial. Our goal was to carry out a detailed investigation of the stability of MeV and MuV under various pH, temperature, shear stress, filtration and storage conditions, as well as to evaluate two commonly used purification techniques, ultracentrifugation and diafiltration, with regard to their efficiency and effect on virus properties. Virus titers were estimated by CCID50 assay, particle size and concentration were measured by Nanoparticle tracking analysis (NTA) measurements, and the host cell protein content was determined by ELISA. The results demonstrated the stability of MuV and MeV at pH <9 and above pH 4 and 5, respectively, and aggregation was observed at pH >9. Storage without stabilizer did not result in structural changes, but the reduction in infectivity after 24 hours was significant at +37 °C. Vortexing of the viruses resulted in significant particle degradation, leading to lower virus titers, whereas pipetting had much less impact on virus viability. Diafiltration resulted in higher recovery of both total and infectious virus particles than ultracentrifugation. These results provide important data for research on all upstream and downstream processes on these two viruses regarding biotechnological production and basic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lamb RA, Parks GD (2013) Paramixoviridae. In: Knipe DM, Howley PM (eds) Fields Virol, 6th edn. Lippincot Williams & Wilkins, Philadelphia, pp 957–995

    Google Scholar 

  2. Daikoku E, Morita C, Kohno T, Sano K (2007) Analysis of morphology and infectivity of measles virus particles. Bull Osaka Med Coll 53:107–114

    Google Scholar 

  3. Weiss K, Salzig D, Röder Y et al (2013) Influence of process conditions on measles virus stability. Am J Biochem Biotechnol 9:243–254

    Article  Google Scholar 

  4. Ray BG, Swain RH (1954) An investigation of the mumps virus by electron microscopy. J Pathol Bacteriol 67:247–252

    Article  CAS  PubMed  Google Scholar 

  5. Duc-Nguyen H, Rosenblum EN (1967) Immuno-electron microscopy of the morphogenesis of mumps virus. J Virol 1:415–429

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bose S, Song AS, Jardetzky TS, Lamb RA (2014) Fusion activation through attachment protein stalk domains indicates a conserved core mechanism of paramyxovirus entry into cells. J Virol 88:3925–3941

    Article  PubMed  PubMed Central  Google Scholar 

  7. Talekar A, Moscona A, Porotto M (2013) Measles virus fusion machinery activated by sialic acid binding globular domain. J Virol 87:13619–13627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weiss K, Salzig D, Mühlebach MD et al (2012) Key parameters of measles virus production for oncolytic virotherapy. Am J Biochem Biotechnol 8:81–98

    Article  CAS  Google Scholar 

  9. Black FL (1959) Growth and stability of measles virus. Virology 7:184–192

    Article  CAS  PubMed  Google Scholar 

  10. Kohn A, Yassky D (1962) Growth of measles virus in KB cells. Virology 17:157–163

    Article  CAS  PubMed  Google Scholar 

  11. Rapp F, Butel JS, Wallis C (1965) Protection of measles virus by sulfate ions against thermal inactivation. J Bacteriol 90:132–135

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Waterson AP, Cruickshank JG, Laurence GD, Kanarek AD (1961) The nature of measles virus. Virology 15:379–382

    Article  CAS  PubMed  Google Scholar 

  13. Weil ML, Beard D, Sharp DG, Beard JW (1948) Purification, pH stability and culture of the mumps virus. J Immunol 60:561–582

    CAS  PubMed  Google Scholar 

  14. de las Mercedes Segura M, Kamen A, Garnier A (2006) Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 24:321–337

    Article  CAS  Google Scholar 

  15. Rodrigues T, Carrondo MJT, Alves PM, Cruz PE (2007) Purification of retroviral vectors for clinical application: Biological implications and technological challenges. J Biotechnol 127:520–541

    Article  CAS  PubMed  Google Scholar 

  16. Burns JC, Friedmann T, Driever W et al (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beyer WR, Westphal M, Ostertag W, von Laer D (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gatlin J, Melkus MW, Padgett A et al (2001) Engraftment of NOD/SCID mice with human CD34(+) cells transduced by concentrated oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. J Virol 75:9995–9999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reiser J (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther 7:910–913

    Article  CAS  PubMed  Google Scholar 

  20. Njayou M, Quash G (1991) Purification of measles virus by affinity chromatography and by ultracentrifugation: a comparative study. J Virol Methods 32:67–77

    Article  CAS  PubMed  Google Scholar 

  21. Nestola P, Peixoto C, Silva RRJS et al. (2015) Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 112:843–857

    Article  CAS  PubMed  Google Scholar 

  22. Nayak DP, Lehmann S, Reichl U (2005) Downstream processing of MDCK cell-derived equine influenza virus. J Chromatogr B 823:75–81

    Article  CAS  Google Scholar 

  23. Paul RW, Morris DAN, Hess BW et al (1993) Increased viral titer through concentration of viral harvests from retroviral packaging lines. Hum Gene Ther 4:609–615

    Article  CAS  PubMed  Google Scholar 

  24. Miller DL, Meikle PJ, Anson DS (1996) A rapid and efficient method for concentration of small volumes of retroviral supernatant. Nucleic Acids Res 24:1576–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segura MM, Puig M, Monfar M, Chillón M (2012) Chromatography purification of canine adenoviral vectors. Hum Gene Ther Methods 23:182–197

    Article  CAS  PubMed  Google Scholar 

  26. Nehring D, Poertner R, Schweizer M et al (2009) Integrated inline filtration: a method to produce highly concentrated retroviral vector titer supernatant. Desalination 245:614–620

    Article  CAS  Google Scholar 

  27. Kotani H, Newton PB, Zhang S et al (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 5:19–28

    Article  CAS  PubMed  Google Scholar 

  28. Vicente T, Peixoto C, Carrondo MJT, Alves PM (2009) Purification of recombinant baculoviruses for gene therapy using membrane processes. Gene Ther 16:766–775

    Article  CAS  PubMed  Google Scholar 

  29. Makino M, Ishikawa G, Yamaguchi K et al (1994) Concentration of live retrovirus with a regenerated cellulose hollow fiber, BMM. Arch Virol 139:87–96

    Article  CAS  PubMed  Google Scholar 

  30. Kuiper M, Sanches RM, Walford JA, Slater NKH (2002) Purification of a functional gene therapy vector derived from moloney murine leukaemia virus using membrane filtration and ceramic hydroxyapatite chromatography. Biotechnol Bioeng 80:445–453

    Article  CAS  PubMed  Google Scholar 

  31. Maranga L, Rueda P, Antonis A et al (2002) Large scale production and downstream processing of a recombinant porcine parvovirus vaccine. Appl Microbiol Biotechnol 59:45–50

    Article  CAS  PubMed  Google Scholar 

  32. Papanikolaou E, Kontostathi G, Drakopoulou E et al (2013) Characterization and comparative performance of lentiviral vector preparations concentrated by either one-step ultrafiltration or ultracentrifugation. Virus Res 175:1–11

    Article  CAS  PubMed  Google Scholar 

  33. Carr B, Wright M (2012) Nanoparticle tracking analysis: a review of applications and usage 2010–2012. Nanosight Ltd, pp 1–193

  34. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Forcic D, Košutić-Gulija T, Šantak M et al (2010) Comparisons of mumps virus potency estimates obtained by 50 % cell culture infective dose assay and plaque assay. Vaccine 28:1887–1892

    Article  CAS  PubMed  Google Scholar 

  36. World Health Organization (1997) Live measles virus vaccine. In: Manual of laboratory methods. Document WHO/VSQ/97.04. World Health Organization, Geneva, pp 79–82

  37. Dean RB, Dixon WJ (1951) Simplified statistics for small numbers of observations. Anal Chem 23:636–638

    Article  CAS  Google Scholar 

  38. Hviid A, Rubin S, Mühlemann K (2008) Mumps. Lancet 371:932–944

    Article  PubMed  Google Scholar 

  39. Kissmann J, Ausar SF, Rudolph A et al (2008) Stabilization of measles virus for vaccine formulation. Hum Vaccin 4:350–359

    Article  PubMed  Google Scholar 

  40. Weil ML, Beard D, Beard JW (1948) pH stability, response to antibiotics and factors influencing egg-culture of mumps virus. Exp Biol Med 68:308–309

    Article  CAS  Google Scholar 

  41. Leprat R, Aymard M (1979) Selective inactivation of hemagglutinin and neuraminidase on mumps virus. Arch Virol 61:273–281

    Article  CAS  PubMed  Google Scholar 

  42. Rani S, Gogoi P, Kumar S (2014) Spectrum of newcastle disease virus stability in gradients of temperature and pH. Biologicals 42:351–354

    Article  CAS  PubMed  Google Scholar 

  43. Moses HE, Brandly CA, Jones EE (1947) The pH stability of viruses of Newcastle disease and fowl plague. Science 105:477–479

    Article  CAS  PubMed  Google Scholar 

  44. Tolba MK, Eskarous JK (1959) pH-stability patterns of some strains of Newcastle disease and fowl-plague viruses. Arch Microbiol 34:333–338

    CAS  Google Scholar 

  45. San Román K, Villar E, Munoz-Barroso I (1999) Acidic pH enhancement of the fusion of Newcastle disease virus with cultured cells. Virology 260:329–341

    Article  PubMed  Google Scholar 

  46. Schlehuber LD, McFadyen IJ, Shu Y et al (2011) Towards ambient temperature-stable vaccines: the identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine 29:5031–5039

    Article  CAS  PubMed  Google Scholar 

  47. Barme M (1985) Stabilizing agents for live viruses for preparing vaccines, and stabilized vaccines containing said stabilized agents. US patent: available at http://www.google.com/patents/US45005. Accessed 29 Sept 2015

  48. Lange C, Rudolph R (2009) Suppression of protein aggregation by L-arginine. Curr Pharm Biotechnol 10:408–414

    Article  CAS  PubMed  Google Scholar 

  49. Ejima D, Yumioka R, Arakawa T, Tsumoto K (2005) Arginine as an effective additive in gel permeation chromatography. J Chromatogr A 1094:49–55

    Article  CAS  PubMed  Google Scholar 

  50. Arakawa T, Philo JS, Tsumoto K et al (2004) Elution of antibodies from a protein-A column by aqueous arginine solutions. Protein Expr Purif 36:244–248

    Article  CAS  PubMed  Google Scholar 

  51. Katakam M, Bell LN, Banga AK (1995) Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci 84:713–716

    Article  CAS  PubMed  Google Scholar 

  52. Beauséjour Y, Tremblay MJ (2004) Interaction between the cytoplasmic domain of ICAM-1 and Pr55 Gag leads to acquisition of host ICAM-1 by human immunodeficiency virus type 1. J Virol 78:11916–11925

    Article  PubMed  PubMed Central  Google Scholar 

  53. Biswas M, Johnson JB, Kumar SRP et al (2012) Incorporation of host complement regulatory proteins into Newcastle disease virus enhances complement evasion. J Virol 86:12708–12716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cantin R, Méthot S, Tremblay MJ (2005) Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J Virol 79:6577–6587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372:359–362

    Article  CAS  PubMed  Google Scholar 

  56. Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    Article  CAS  PubMed  Google Scholar 

  57. Shaw ML, Stone KL, Colangelo CM et al (2008) Cellular proteins in influenza virus particles. PLoS Pathog 4:1–13

    Article  Google Scholar 

  58. Lotfian P, Levy MS, Coffin RS et al (2003) Impact of process conditions on the centrifugal recovery of a disabled herpes simplex virus. Biotechnol Prog 19:209–215

    Article  CAS  PubMed  Google Scholar 

  59. Zimmermann K, Scheibe O, Kocourek A et al (2011) Highly efficient concentration of lenti- and retroviral vector preparations by membrane adsorbers and ultrafiltration. BMC Biotechnol 11:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nestola P, Martins DL, Peixoto C et al (2014) Evaluation of novel large cut-off ultrafiltration membranes for adenovirus serotype 5 (Ad5) concentration. PLoS One 9:e115802

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Renata Jug for her assistance in the experimental procedures. This study was funded by the Croatian Science Foundation (grant number 8193 to MB).

Any opinions, findings and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the Croatian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Sviben.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sviben, D., Forčić, D., Kurtović, T. et al. Stability, biophysical properties and effect of ultracentrifugation and diafiltration on measles virus and mumps virus. Arch Virol 161, 1455–1467 (2016). https://doi.org/10.1007/s00705-016-2801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2801-3

Keywords

Navigation