Skip to main content

Advertisement

Log in

A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4+ and CD8+ T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4+ and CD8+ T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4+ T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stanford MM, McFadden G, Karupiah G, Chaudhri G (2007) Immunopathogenesis of poxvirus infections: forecasting the impending storm. Immunol Cell Biol 85:93–102

    Article  CAS  PubMed  Google Scholar 

  2. Esteban DJR, Buller ML (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 861:2645–2659

    Article  Google Scholar 

  3. Wallace GD, Buller RM (1985) Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6j, BALB/cByj and AKR/J inbred mice. Lab Anim Sci 35:41–46

    CAS  PubMed  Google Scholar 

  4. Jacoby RO, Bhatt PN, Brownstein DG (1989) Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol 108:49–58

    Article  CAS  PubMed  Google Scholar 

  5. Delano ML, Brownstein DG (1995) Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J Virol 69:5875–5877

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramaswamy M, Cleland SY, Cruz AC, Siegel RM (2009) Many checkpoints on the road to cell death: regulation of Fas-FasL interactions and Fas signaling in peripheral immune responses. Results Probl Cell Differ 49:17–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davidson WF, Haudenschild C, Kwon J, Williams MS (2002) T cell receptor ligation triggers novel nonapoptotic cell death pathways that are Fas-independent or Fas-dependent. J Immunol 169:6218–6230

    Article  CAS  PubMed  Google Scholar 

  8. Ju ST, Panka DJ, Cui H, Ettinger R et al (1995) Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373:444–448

    Article  CAS  PubMed  Google Scholar 

  9. Stranges PB, Watson J, Cooper CJ et al (2007) Elimination of antigen-presenting cells and autoreactive T cells by fas contributes to prevention of autoimmunity. Immunity 26:629–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krzyzowska M, Baska P, Orlowski P et al (2013) HSV-2 regulates monocyte inflammatory response via the Fas/FasL pathway. PLoS One 8:e70308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyons C, Fernandes P, Fanning LJ, Houston A, Brint E (2015) Engagement of Fas on macrophages modulates poly I:C induced cytokine production with specific enhancement of IP-10. PLoS One 10:e0123635

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shrestha B, Diamond MS (2007) Fas ligand interactions contribute to CD8 T-cell-mediated control of West Nile virus infection in the central nervous system. J Virol 81:11749–11757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson J, Chu CF, Milligan GN (2008) Effector CD4 T-cell involvement in clearance of infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol 82:9678–9688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Topham DJ, Tripp RA, Doherty PC (1997) CD8 T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol 159:5197–5200

    CAS  PubMed  Google Scholar 

  15. Parra B, Lin MT, Stohlman SA et al (2000) Contributions of Fas-Fas ligand interactions to the pathogenesis of mouse hepatitis virus in the central nervous system. J Virol 74:2447–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhri G, Panchanathan V, Buller RM et al (2004) Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci USA 101:9057–9062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trapani A, Jans DA, Jans PJ et al (1998) Efficient nuclear targeting of granzyme B and the nu- clear consequences of apoptosis induced by granzyme B and perforin are caspase-dependent, but cell death is caspase-independent. J Biol Chem 273:27934–27938

    Article  CAS  PubMed  Google Scholar 

  18. Turner SJ, Silke J, Kenshole B, Ruby J (2000) Characterization of the ectromelia virus serpin, SPI-2. J Gen Virol 81:2425–2430

    Article  CAS  PubMed  Google Scholar 

  19. Krzyzowska M, Polanczyk M, Bas M et al (2005) Mousepox conjunctivitis: the role of Fas/FasL-mediated apoptosis of epithelial cells in virus dissemination. J Gen Virol 86:2007–2018

    Article  CAS  PubMed  Google Scholar 

  20. Krzyzowska M, Cymerys J, Winnicka A, Niemiałtowski M (2006) Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 115:141–149

    Article  CAS  PubMed  Google Scholar 

  21. Bień K, Sokołowska J, Bąska P et al (2015) Fas/FasL pathway participates in regulation of antiviral and inflammatory response during mousepox infection of lungs. Mediators Inflamm 2015:281613. doi:10.1155/2015/281613

    PubMed  PubMed Central  Google Scholar 

  22. Krzyzowska M, Orłowski P, Bąska P, Bodera P, Zdanowski R, Stankiewicz W (2014) Role of Fas/FasL signaling in regulation of anti-viral response during HSV-2 vaginal infection in mice. Immunobiology 219:932–943

    Article  CAS  PubMed  Google Scholar 

  23. Gunalp A (1965) Growth and cytopathic effect of rubella virus in a line of green monkey kidney cells. Proc Soc Exp Biol Med 118:185–190

    Article  Google Scholar 

  24. Krzyzowska M, Schollenberger A, Skierski J, Niemialtowski M (2002) Apoptosis during ectromelia orthopoxvirus infection is DEVDase dependent: in vitro and in vivo studies. Microbes Infect 4:599–611

    Article  CAS  PubMed  Google Scholar 

  25. Amoah S, Holbrook BC, Yammani RD, Alexander-Miller MA (2013) High viral burden restricts short-lived effector cell number at late times postinfection through increased natural regulatory T cell expansion. J Immunol 190:5020–5029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Müllbacher A, Wallich R, Moyer RW, Simon MM (1999) Poxvirus-encoded serpins do not prevent cytolytic T cell-mediated recovery from primary infections. J Immunol 162:7315–7321

    PubMed  Google Scholar 

  28. Brownstein DG, Gras L (1995) Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol 69:6958–6964

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Biron A, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  CAS  PubMed  Google Scholar 

  30. Parker K, Parker S, Yokoyama WM, Corbett JA, Buller RM (2007) Induction of natural killer cell responses by ectromelia virus controls infection. J Virol 81:4070–4079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang LL, Lanier L, Sigal J (2008) A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLoS Pathog 4:e30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meyer H, Damon K, Esposito JJ (2004) Orthopoxvirus diagnostics. Methods Mol Biol 269:119–133

    CAS  PubMed  Google Scholar 

  33. Karupiah G, Buller RM, Rooijen Van et al (1996) Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70:8301–8309

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang M, Siciliano NA, Hersperger AR et al (2012) Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci USA 109:9983–9988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seedhom MO, Keisha S, Mathurin KS, Kim SK, Welsh RM (2012) Increased protection from Vaccinia Virus infection in mice genetically prone to lymphoproliferative disorders. J Virol 86:6010–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  Google Scholar 

  37. Veiga-Parga T, Sehrawat S, Rouse BT (2013) Role of regulatory T cells during virus infection. Immunol Rev 255:182–196

    Article  PubMed  PubMed Central  Google Scholar 

  38. Haeryfar SM, DiPaolo RJ, Tscharke DC, Bennink JR, Yewdell JW (2005) Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities. J Immunol 174:3344–3351

    Article  CAS  PubMed  Google Scholar 

  39. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y (2004) Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104:3249–3256

    Article  CAS  PubMed  Google Scholar 

  40. Nan XP, Zhang Y, Yu HT et al (2012) Inhibition of viral replication down-regulates CD4(+)CD25(high) regulatory T cells and programmed death-ligand 1 in chronic hepatitis B. Viral Immunol 25:21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding Y, Xu J, Bromberg JS (2012) Regulatory T cell migration during an immune response. Trends Immunol 33:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pletinckx K, Lutz MB (2014) Dendritic cells generated with Flt3L and exposed o apoptotic cells lack induction of T cell anergy and Foxp3+ regulatory T cell conversion in vitro. Immunobiology 219:230–240

    Article  CAS  PubMed  Google Scholar 

  43. Engelmayer J, Larsson M, Subklewe M et al (1999) Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 163:6762–6768

    CAS  PubMed  Google Scholar 

  44. Chatzigeorgiou A, Lyberi M, Chatzilymperis G et al (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35:474–483

    Article  CAS  PubMed  Google Scholar 

  45. Yao S, Chen L (2014) PD-1 as an immune modulatory receptor. Cancer J 20:262–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamphorst AO, Ahmed R (2013) Manipulating the PD-1 pathway to improve immunity. Curr Opin Immunol 25:381–388

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Zhang Z, Zhang S et al (2008) B7–H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur J Immunol 38:3226–3236

    Article  CAS  PubMed  Google Scholar 

  48. Shen T, Chen X, Chen Y et al (2010) Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 82:1152–1159

    Article  CAS  PubMed  Google Scholar 

  49. Chentoufi AA, Dervillez X, Dasgupta G et al (2012) The herpes simplex virus type 1 latency-associated transcript inhibits phenotypic and functional maturation of dendritic cells. Viral Immunol 25:204–215

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fritzsching B, Oberle N, Eberhardt N et al (2005) In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol. 175:32–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was the subject of two Master Thesis projects (for KB and ZS) and was co-funded by grants from the Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krzyzowska.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bień, K., Sobańska, Z., Sokołowska, J. et al. A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection. Arch Virol 161, 913–928 (2016). https://doi.org/10.1007/s00705-015-2746-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2746-y

Keywords

Navigation