Skip to main content

Advertisement

Log in

Detection and molecular characterization of zoonotic viruses in swine fecal samples in Italian pig herds

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Gastrointestinal disease is frequent in pigs, and among the different etiological agents involved, viruses are considered the leading cause of infection in this animal species. Furthermore, about half of the newly identified swine pathogens are viruses, many of which may be transmitted to humans by direct contact or by indirect transmission pathways. In this study, the prevalence of astrovirus (AstV), group A rotavirus (RVA), norovirus (NoV) and hepatitis E virus (HEV) infections in pigs was investigated. During 2012-2014, 242 fecal samples were collected from pigs at different production stages (5 to 220 days old) on eight swine farms located in northern, central and southern Italy. Seven out of eight farms analyzed were positive for AstV, which was detected in 163 out of 242 (67.4 %) samples and was the most prevalent virus; 61 of the 163 AstV-positive animals (37.4 %) had diarrhea. HEV was detected on six farms and in 45 (18.6 %) of the 242 samples analyzed. Twenty-three HEV-infected pigs had diarrhea (51.1 %). A lower prevalence was observed for RVA, which was found in 10 of the 242 samples (4.1 %) from three positive farms, and diarrhea was present only in six infected pigs (60.0 %). No swine samples were found to be positive for NoV. Genetic diversity and phylogenetic relationships of some strains representative of the different viruses detected were investigated, confirming a wide heterogeneity of viral strains circulating among pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koopmans M, Duizer E (2004) Foodborne viruses: an emerging problem. Int J Food Microbiol 90:23–41

    Article  PubMed  Google Scholar 

  2. Fournie G, Kearsley-Fleet L, Otte J, Pfeiffer D (2012) Trends in the emergence of swine pathogens. Food and Agricultural Organization of the United Nations, Regional office for Asia and the Pacific, Bangkok

    Google Scholar 

  3. Milne-Price S, Miazgowicz KL, Munster VJ (2014) The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis 71:121–136

    Article  PubMed  Google Scholar 

  4. Dorjee S, Poljak Z, Revie CW, Bridgland J, McNab B, Leger E, Sanchez J (2013) A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations. Zoonoses Public Health 60:383–411

    Article  CAS  PubMed  Google Scholar 

  5. Bosch A, Guix S, Krishna NK, Méndez E, Monroe SS, Pantin-Jackwood M, Schultz-Cherry S (2011) Family astroviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses (ninth report of the international committee on the taxonomy of viruses). Elsevier, New York, pp 953–959

    Google Scholar 

  6. Bridger JC (1980) Detection by electron microscopy of caliciviruses, astroviruses and rotavirus-like particles in the faeces of piglets with diarrhoea. Vet Rec 107:532–533

    CAS  PubMed  Google Scholar 

  7. Reuter G, Pankovics P, Boros A (2011) Identification of a novel astrovirus in a domestic pig in Hungary. Arch Virol 156:125–128

    Article  CAS  PubMed  Google Scholar 

  8. De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G (2011) Astrovirus infections in humans and animals - molecular biology, genetic diversity, and interspecies transmissions. Infect Genet Evol 11:1529–1544

    Article  PubMed  Google Scholar 

  9. Ulloa JC, Gutierrez MF (2010) Genomic analysis of two ORF2 segments of new porcine astrovirus isolates and their close relationship with human astroviruses. Can J Microbiol 56:569–577

    Article  CAS  PubMed  Google Scholar 

  10. van Beek J, Ambert-Balay K, Botteldoorn N, Eden JS, Fonager J, Hewitt J, Iritani N, Kroneman A, Vennema H, Vinje J, White PA, Koopmans M (2013) Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Euro Surveill 18:8–9

    PubMed  Google Scholar 

  11. Zheng DP, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS (2006) Norovirus classification and proposed strain nomenclature. Virology 346:312–323

    Article  CAS  PubMed  Google Scholar 

  12. Martella V, Decaro N, Lorusso E, Radogna A, Moschidou P, Amorisco F, Lucente MS, Desario C, Mari V, Elia G, Banyai K, Carmichael LE, Buonavoglia C (2009) Genetic heterogeneity and recombination in canine noroviruses. J Virol 83:11391–11396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Green KY (2013) Caliciviridae: The Noroviruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 582–608

    Google Scholar 

  14. Keum HO, Moon HJ, Park SJ, Kim HK, Rho SM, Park BK (2009) Porcine noroviruses and sapoviruses on Korean swine farms. Arch Virol 154:1765–1774

    Article  CAS  PubMed  Google Scholar 

  15. Martinez MA, Alcala AC, Carruyo G, Botero L, Liprandi F, Ludert JE (2006) Molecular detection of porcine enteric caliciviruses in Venezuelan farms. Vet Microbiol 116:77–84

    Article  CAS  PubMed  Google Scholar 

  16. Reuter G, Biro H, Szucs G (2007) Enteric caliciviruses in domestic pigs in Hungary. Arch Virol 152:611–614

    Article  CAS  PubMed  Google Scholar 

  17. Scheuer KA, Oka T, Hoet AE, Gebreyes WA, Molla BZ, Saif LJ, Wang Q (2013) Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses. J Clin Microbiol 51:2344–2353

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wang QH, Chang KO, Han MG, Sreevatsan S, Saif LJ (2006) Development of a new microwell hybridization assay and an internal control RNA for the detection of porcine noroviruses and sapoviruses by reverse transcription-PCR. J Virol Methods 132:135–145

    Article  CAS  PubMed  Google Scholar 

  19. Shen Q, Zhang W, Yang S, Cui L, Hua X (2012) Complete genome sequence of a new-genotype porcine norovirus isolated from piglets with diarrhea. J Virol 86:7015–7016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Glass RI, Bresee JS, Parashar U, Miller M, Gentsch JR (1997) Rotavirus vaccines at the threshold. Nat Med 3:1324–1325

    Article  CAS  PubMed  Google Scholar 

  21. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields Virology, 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  22. Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD (2012) 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141

    Article  PubMed  Google Scholar 

  23. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156:1397–1413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R (2013) Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94:136–142

    Article  CAS  PubMed  Google Scholar 

  25. Khamrin P, Maneekarn N, Peerakome S, Yagyu F, Okitsu S, Ushijima H (2006) Molecular characterization of a rare G3P[3] human rotavirus reassortant strain reveals evidence for multiple human-animal interspecies transmissions. J Med Virol 78:986–994

    Article  CAS  PubMed  Google Scholar 

  26. Midgley SE, Banyai K, Buesa J, Halaihel N, Hjulsager CK, Jakab F, Kaplon J, Larsen LE, Monini M, Poljsak-Prijatelj M, Pothier P, Ruggeri FM, Steyer A, Koopmans M, Bottiger B (2012) Diversity and zoonotic potential of rotaviruses in swine and cattle across Europe. Vet Microbiol 156:238–245

    Article  PubMed  Google Scholar 

  27. Emerson SU, Purcell RH (2013) Hepatitis E virus. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  28. Smith DB, Simmonds P, Jameel S, Emerson SU, Harrison TJ, Meng XJ, Okamoto H, Van der Poel WH, Purdy MA (2014) Consensus proposals for classification of the family Hepeviridae. J Gen Virol 95:2223–2232

    Article  PubMed Central  PubMed  Google Scholar 

  29. Meng XJ, Anderson DA, Arankalle VA, Emerson SU, Harrison TJ, Jameel S et al (2012) Hepeviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: ninth report of the ICTV. Elsevier, London, pp 1021–1028

    Google Scholar 

  30. Tam AW, Smith MM, Guerra ME, Huang CC, Bradley DW, Fry KE, Reyes GR (1991) Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. Virology 185:120–131

    Article  CAS  PubMed  Google Scholar 

  31. Yamada K, Takahashi M, Hoshino Y, Takahashi H, Ichiyama K, Nagashima S, Tanaka T, Okamoto H (2009) ORF3 protein of hepatitis E virus is essential for virion release from infected cells. J Gen Virol 90:1880–1891

    Article  CAS  PubMed  Google Scholar 

  32. Meng XJ, Purcell RH, Halbur PG, Lehman JR, Webb DM, Tsareva TS, Haynes JS, Thacker BJ, Emerson SU (1997) A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci USA 94:9860–9865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Van der Poel WH (2014) Food and environmental routes of Hepatitis E virus transmission. Curr Opin Virol 4:91–96

    Article  PubMed  Google Scholar 

  34. Mizuo H, Suzuki K, Takikawa Y, Sugai Y, Tokita H, Akahane Y, Itoh K, Gotanda Y, Takahashi M, Nishizawa T, Okamoto H (2002) Polyphyletic strains of hepatitis E virus are responsible for sporadic cases of acute hepatitis in Japan. J Clin Microbiol 40:3209–3218

    Article  PubMed Central  PubMed  Google Scholar 

  35. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Machnowska P, Ellerbroek L, Johne R (2014) Detection and characterization of potentially zoonotic viruses in faeces of pigs at slaughter in Germany. Vet Microbiol 168:60–68

    Article  PubMed  Google Scholar 

  37. Meng XJ (2011) From barnyard to food table: the omnipresence of hepatitis E virus and risk for zoonotic infection and food safety. Virus Res 161:23–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mattison K, Shukla A, Cook A, Pollari F, Friendship R, Kelton D, Bidawid S, Farber JM (2007) Human noroviruses in swine and cattle. Emerg Infect Dis 13:1184–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mirazo S, Ramos N, Mainardi V, Gerona S, Arbiza J (2014) Transmission, diagnosis, and management of hepatitis E: an update. Hepat Med 6:45–59

    Article  PubMed Central  PubMed  Google Scholar 

  40. Mizukoshi F, Kuroda M, Tsukagoshi H, Sekizuka T, Funatogawa K, Morita Y, Noda M, Katayama K, Kimura H (2014) A food-borne outbreak of gastroenteritis due to genotype G1P[8] rotavirus among adolescents in Japan. Microbiol Immunol 58:536–539

    Article  CAS  PubMed  Google Scholar 

  41. Bernard H, Faber M, Wilking H, Haller S, Hohle M, Schielke A, Ducomble T, Siffczyk C, Merbecks SS, Fricke G, Hamouda O, Stark K, Werber D (2014) Large multistate outbreak of norovirus gastroenteritis associated with frozen strawberries, Germany, 2012. Euro Surveill 19:20719

    CAS  PubMed  Google Scholar 

  42. Mathijs E, Stals A, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Uyttendaele M, Thiry E (2012) A review of known and hypothetical transmission routes for noroviruses. Food Environ Virol 4:131–152

    Article  PubMed  Google Scholar 

  43. Brnic D, Jemersic L, Keros T, Prpic J (2014) High prevalence and genetic heterogeneity of porcine astroviruses in domestic pigs. Vet J 202:390–392

    Article  PubMed  Google Scholar 

  44. Luo Z, Roi S, Dastor M, Gallice E, Laurin MA, L’Homme Y (2011) Multiple novel and prevalent astroviruses in pigs. Vet Microbiol 149:316–323

    Article  PubMed  Google Scholar 

  45. Di Bartolo I, Tofani S, Angeloni G, Ponterio E, Ostanello F, Ruggeri FM (2014) Detection and characterization of porcine caliciviruses in Italy. Arch Virol 159:2479–2484

    Article  PubMed  Google Scholar 

  46. Martella V, Lorusso E, Banyai K, Decaro N, Corrente M, Elia G, Cavalli A, Radogna A, Costantini V, Saif LJ, Lavazza A, Di Trani L, Buonavoglia C (2008) Identification of a porcine calicivirus related genetically to human sapoviruses. J Clin Microbiol 46:1907–1913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. L’Homme Y, Sansregret R, Plante-Fortier E, Lamontagne AM, Lacroix G, Ouardani M, Deschamps J, Simard G, Simard C (2009) Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005–2007. Arch Virol 154:581–593

    Article  PubMed  Google Scholar 

  48. Mauroy A, Scipioni A, Mathijs E, Thys C, Thiry E (2009) Molecular detection of kobuviruses and recombinant noroviruses in cattle in continental Europe. Arch Virol 154:1841–1845

    Article  CAS  PubMed  Google Scholar 

  49. Sebire NJ, Malone M, Shah N, Anderson G, Gaspar HB, Cubitt WD (2004) Pathology of astrovirus associated diarrhoea in a paediatric bone marrow transplant recipient. J Clin Pathol 57:1001–1003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mor SK, Chander Y, Marthaler D, Patnayak DP, Goyal SM (2012) Detection and molecular characterization of Porcine astrovirus strains associated with swine diarrhea. J Vet Diagn Invest 24:1064–1067

    Article  PubMed  Google Scholar 

  51. Reuter G, Nemes C, Boros A, Kapusinszky B, Delwart E, Pankovics P (2012) Astrovirus in wild boars (Sus scrofa) in Hungary. Arch Virol 157:1143–1147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Xiao CT, Gimenez-Lirola LG, Gerber PF, Jiang YH, Halbur PG, Opriessnig T (2013) Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J Gen Virol 94:570–582

    Article  CAS  PubMed  Google Scholar 

  53. Monini M, Zaccaria G, Ianiro G, Lavazza A, Vaccari G, Ruggeri FM (2014) Full-length genomic analysis of porcine rotavirus strains isolated from pigs with diarrhea in Northern Italy. Infect Genet Evol 25:4–13

    Article  CAS  PubMed  Google Scholar 

  54. Ruggeri FM, Di Bartolo I, Ponterio E, Angeloni G, Trevisani M, Ostanello F (2013) Zoonotic transmission of hepatitis E virus in industrialized countries. New Microbiol 36:331–344

    CAS  PubMed  Google Scholar 

  55. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza-Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by funding from the European Union’s Seventh Framework Programme for Research, Technological Development and Demonstration, under Grant Agreement No. 278433-PREDEMICS, and by EUROROTANET (http://www.eurorota.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Monini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monini, M., Di Bartolo, I., Ianiro, G. et al. Detection and molecular characterization of zoonotic viruses in swine fecal samples in Italian pig herds. Arch Virol 160, 2547–2556 (2015). https://doi.org/10.1007/s00705-015-2538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2538-4

Keywords

Navigation