Skip to main content
Log in

Development of human papillomavirus chimaeric L1/L2 candidate vaccines

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recombinant human papillomavirus (HPV) virus-like particle (VLP) vaccines based on the L1 capsid protein have been shown to be efficient prophylactic vaccines, albeit type-specific. As a first step to investigate the feasibility of extending protection against non-vaccine types, HPV-16 L1 chimaeras were generated. The region downstream of L1 amino acid (aa) 413 was replaced with selected cross-neutralising epitopes (aa 108-120; 56-81 and 17-36) derived from the HPV-16 L2 protein, generating proteins designated SAF, L2.56 and L2.17, respectively. The chimaera L1BPV containing BPV-1 L2 peptide aa 1-88 was similarly constructed. The chimaeras were evaluated for expression in insect cells; their ability to form particles was studied by electron microscopy, and their immunogenicity was evaluated in mice. SAF, L2.56 and L2.17 proteins were expressed to high concentrations in insect cells and elicited HPV-16 pseudovirus-neutralising anti-L1 antibodies. L2.56 and L2.17 also elicited anti-L2 antibodies. L1BPV was a poor vaccine candidate due to low levels of expression with concomitant lack of immunogenicity. All chimaeras assembled into tertiary structures. The results indicate that chimaeric L1 vaccines incorporating cross-neutralising L2 peptides could be promising second-generation prophylactic HPV vaccine candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alphs HH, Gambhira R, Karanam B, Roberts JN, Jagu S, Schiller JT, Zeng W, Jackson DC, Roden RBS (2008) Protection against heterologous human papillomavirus challenge by a synthetic lipopeptide vaccine containing a broadly cross-neutralizing epitope of L2. Proc Natl Acad Sci USA 105:5850–5855

    Article  PubMed  CAS  Google Scholar 

  2. Bernard H-U, Burk RD, Chen Z, Van Doorslaer K, Hausen Hz, De Villiers E-M (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79

    Article  PubMed  CAS  Google Scholar 

  3. Bishop B, Dasgupta J, Chen XS (2007) Structure-based engineering of papillomavirus major capsid L1: controlling particle assembly. Virol J 4:3

    Article  PubMed  Google Scholar 

  4. Bosch FX (2009) Broad-spectrum human papillomavirus vaccines: new horizons but one step at a time. J Natl Cancer Inst 101:771–773

    Article  PubMed  Google Scholar 

  5. Bosch FX, Burchell AN, Schiffman M, Giuliano AR, De Sanjose S, Bruni L, Tortolero-Luna G, Kjaer SK, Muñoz N (2008) Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. Vaccine 26(Suppl 10):K1–K16

    Article  PubMed  Google Scholar 

  6. Breitburd F, Kirnbauer R, Hubbert NL, Nonnenmacher B, Trin-Dinh-Desmarquet C, Orth G, Schiller JT, Lowy DR (1995) Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 69:3959–3963

    PubMed  CAS  Google Scholar 

  7. Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197

    Article  PubMed  CAS  Google Scholar 

  8. Buck CB, Pastrana DV, Lowy DR, Schiller JT (2005) Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol Med 119:445–462

    PubMed  CAS  Google Scholar 

  9. Cason J, Kambo PK, Jewers RJ, Best JM (1994) Detection of protein aggregates, but not virus-like particles, when the major (L1) coat protein of a wild-type human papillomavirus type 16 (HPV-16) is expressed in insect cells. Biochem Soc Trans 22:335S

    PubMed  CAS  Google Scholar 

  10. Castellsagué X (2008) Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110:S4–S7

    Article  PubMed  Google Scholar 

  11. Chackerian B, Lowy DR, Schiller JT (1999) Induction of autoantibodies to mouse CCR5 with recombinant papillomavirus particles. Proc Natl Acad Sci USA 96:2373–2378

    Article  PubMed  CAS  Google Scholar 

  12. Chen XS, Garcea RL, Goldberg I, Casini G, Harrison SC (2000) Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol Cell 5:557–567

    Article  PubMed  CAS  Google Scholar 

  13. Christensen ND, Dillner J, Eklund C, Carter JJ, Wipf GC, Reed CA, Cladel NM, Galloway DA (1996) Surface conformational and linear epitopes on HPV-16 and HPV-18 L1 virus-like particles as defined by monoclonal antibodies. Virology 223:174–184

    Article  PubMed  CAS  Google Scholar 

  14. Christensen ND, Kreider JW (1990) Antibody-mediated neutralization in vivo of infectious papillomaviruses. J Virol 64:3151–3156

    PubMed  CAS  Google Scholar 

  15. Cutts FT, Franceschi S, Goldie S, Castellsague X, De Sanjose S, Garnett G, Edmunds WJ, Claeys P, Goldenthal KL, Harper DM, Markowitz L (2007) Human papillomavirus and HPV vaccines: a review. Bull World Health Organ 85:719–726

    Article  PubMed  CAS  Google Scholar 

  16. Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y, Lockman L, Giannini S, Deschamps M (2010) Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in CervarixTM, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Hum Vaccin 6:407–419

    Article  PubMed  CAS  Google Scholar 

  17. de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, Zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  18. Embers ME, Budgeon LR, Pickel M, Christensen ND (2002) Protective immunity to rabbit oral and cutaneous papillomaviruses by immunization with short peptides of L2, the minor capsid protein. J Virol 76:9798–9805

    Article  PubMed  CAS  Google Scholar 

  19. Fang NX, Frazer IH, Fernando GJ (2000) Differences in the post-translational modifications of human papillomavirus type 6b major capsid protein expressed from a baculovirus system compared with a vaccinia virus system. Biotechnol Appl Biochem 32(Pt 1):27–33

    Article  PubMed  CAS  Google Scholar 

  20. Gambhira R, Karanam B, Jagu S, Roberts JN, Buck CB, Bossis I, Alphs H, Culp T, Christensen ND, Roden RBS (2007) A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J Virol 81:13927–13931

    Article  PubMed  CAS  Google Scholar 

  21. Huh WK, Roden RBS (2008) The future of vaccines for cervical cancer. Gynecol Oncol 109:S48–S56

    Article  PubMed  CAS  Google Scholar 

  22. Kawana K, Matsumoto K, Yoshikawa H, Taketani Y, Kawana T, Yoshiike K, Kanda T (1998) A surface immunodeterminant of human papillomavirus type 16 minor capsid protein L2. Virology 245:353–359

    Article  PubMed  CAS  Google Scholar 

  23. Kawana K, Yasugi T, Kanda T, Kino N, Oda K, Okada S, Kawana Y, Nei T, Takada T, Toyoshima S, Tsuchiya A, Kondo K, Yoshikawa H, Tsutsumi O, Taketani Y (2003) Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine 21:4256–4260

    Article  PubMed  CAS  Google Scholar 

  24. Kawana K, Yoshikawa H, Taketani Y, Yoshiike K, Kanda T (1999) Common neutralization epitope in minor capsid protein L2 of human papillomavirus types 16 and 6. J Virol 73:6188–6190

    PubMed  CAS  Google Scholar 

  25. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184

    Article  PubMed  CAS  Google Scholar 

  26. Koh YT, Higgins SA, Weber JS, Kast WM (2006) Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund’s adjuvant. J Transl Med 4:42

    Article  PubMed  Google Scholar 

  27. Kohl TO, Hitzeroth II, Christensen ND, Rybicki EP (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56

    Article  PubMed  Google Scholar 

  28. Kondo K, Ishii Y, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358:266–272

    Article  PubMed  CAS  Google Scholar 

  29. Kondo K, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2008) Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J Med Virol 80:841–846

    Article  PubMed  CAS  Google Scholar 

  30. Kuck D, Leder C, Kern A, Müller M, Piuko K, Gissmann L, Kleinschmidt JA (2006) Efficiency of HPV 16 L1/E7 DNA immunization: influence of cellular localization and capsid assembly. Vaccine 24:2952–2965

    Article  PubMed  CAS  Google Scholar 

  31. Lenz P, Day PM, Pang YY, Frye SA, Jensen PN, Lowy DR, Schiller JT (2001) Papillomavirus-like particles induce acute activation of dendritic cells. J Immunol 166:5346–5355

    PubMed  CAS  Google Scholar 

  32. Lenz P, Thompson CD, Day PM, Bacot SM, Lowy DR, Schiller JT (2003) Interaction of papillomavirus virus-like particles with human myeloid antigen-presenting cells. Clin Immunol 106:231–237

    Article  PubMed  CAS  Google Scholar 

  33. Liu XS, Liu WJ, Zhao KN, Liu YH, Leggatt G, Frazer IH (2002) Route of administration of chimeric BPV1 VLP determines the character of the induced immune responses. Immunol Cell Biol 80:21–29

    Article  PubMed  CAS  Google Scholar 

  34. Maclean J, Koekemoer M, Olivier AJ, Stewart D, Hitzeroth II, Rademacher T, Fischer R, Williamson A-L, Rybicki EP (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469

    Article  PubMed  CAS  Google Scholar 

  35. Murata Y, Lightfoote PM, Rose RC, Walsh EE (2009) Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres. Virol J 6:81

    Article  PubMed  Google Scholar 

  36. Neeper MP, Hofmann KJ, Jansen KU (1996) Expression of the major capsid protein of human papillomavirus type 11 in Saccharomyces cerevisae. Gene 180:1–6

    Article  PubMed  CAS  Google Scholar 

  37. Ohlschläger P, Osen W, Dell K, Faath S, Garcea RL, Jochmus I, Müller M, Pawlita M, Schäfer K, Sehr P, Staib C, Sutter G, Gissmann L (2003) Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice. J Virol 77:4635–4645

    Article  PubMed  Google Scholar 

  38. Pastrana DV, Buck CB, Pang Y-YS, Thompson CD, Castle PE, FitzGerald PC, Krüger Kjaer S, Lowy DR, Schiller JT (2004) Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321:205–216

    Article  PubMed  CAS  Google Scholar 

  39. Pastrana DV, Gambhira R, Buck CB, Pang Y-YS, Thompson CD, Culp TD, Christensen ND, Lowy DR, Schiller JT, Roden RBS (2005) Cross-neutralization of cutaneous and mucosal Papillomavirus types with anti-sera to the amino terminus of L2. Virology 337:365–372

    Article  PubMed  CAS  Google Scholar 

  40. Pillay S, Meyers A, Williamson A-L, Rybicki EP (2009) Optimization of chimeric HIV-1 virus-like particle production in a baculovirus-insect cell expression system. Biotechnol Prog 25:1153–1160

    Article  PubMed  CAS  Google Scholar 

  41. Roden RB, Yutzy WH 4th, Fallon R, Inglis S, Lowy DR, Schiller JT (2000) Minor capsid protein of human genital papillomaviruses contains subdominant, cross-neutralizing epitopes. Virology 270:254–257

    Article  PubMed  CAS  Google Scholar 

  42. Rose RC, Bonnez W, Da Rin C, McCance DJ, Reichman RC (1994) Serological differentiation of human papillomavirus types 11, 16 and 18 using recombinant virus-like particles. J Gen Virol 75(Pt 9):2445–2449

    Article  PubMed  Google Scholar 

  43. Rubio I, Bolchi A, Moretto N, Canali E, Gissmann L, Tommasino M, Müller M, Ottonello S (2009) Potent anti-HPV immune responses induced by tandem repeats of the HPV16 L2 (20–38) peptide displayed on bacterial thioredoxin. Vaccine 27:1949–1956

    Article  PubMed  CAS  Google Scholar 

  44. Rudolf MP, Fausch SC, Da Silva DM, Kast WM (2001) Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol 166:5917–5924

    PubMed  CAS  Google Scholar 

  45. Schädlich L, Senger T, Gerlach B, Mücke N, Klein C, Bravo IG, Müller M, Gissmann L (2009) Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J Virol 83:7690–7705

    Article  PubMed  Google Scholar 

  46. Schellenbacher C, Roden R, Kirnbauer R (2009) Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J Virol 83:10085–10095

    Article  PubMed  CAS  Google Scholar 

  47. Schiller JT, Castellsagué X, Villa LL, Hildesheim A (2008) An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine 26(Suppl 10):K53–K61

    Article  PubMed  CAS  Google Scholar 

  48. Senger T, Schädlich L, Gissmann L, Müller M (2009) Enhanced papillomavirus-like particle production in insect cells. Virology 388:344–353

    Article  PubMed  CAS  Google Scholar 

  49. Shi L, Sings HL, Bryan JT, Wang B, Wang Y, Mach H, Kosinski M, Washabaugh MW, Sitrin R, Barr E (2007) GARDASIL: prophylactic human papillomavirus vaccine development–from bench top to bed-side. Clin Pharmacol Ther 81:259–264

    Article  PubMed  CAS  Google Scholar 

  50. Slupetzky K, Shafti-Keramat S, Lenz P, Brandt S, Grassauer A, Sara M, Kirnbauer R (2001) Chimeric papillomavirus-like particles expressing a foreign epitope on capsid surface loops. J Gen Virol 82:2799–2804

    PubMed  CAS  Google Scholar 

  51. Thönes N, Herreiner A, Schädlich L, Piuko K, Müller M (2008) A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J Virol 82:5472–5485

    Article  PubMed  Google Scholar 

  52. Touze A, El Mehdaoui S, Sizaret PY, Mougin C, Muñoz N, Coursaget P (1998) The L1 major capsid protein of human papillomavirus type 16 variants affects yield of virus-like particles produced in an insect cell expression system. J Clin Microbiol 36:2046–2051

    PubMed  CAS  Google Scholar 

  53. Varsani A, Williamson A-L, De Villiers D, Becker I, Christensen ND, Rybicki EP (2003) Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J Virol 77:8386–8393

    Article  PubMed  CAS  Google Scholar 

  54. Wakabayashi MT, Da Silva DM, Potkul RK, Kast WM (2002) Comparison of human papillomavirus type 16 L1 chimeric virus-like particles versus L1/L2 chimeric virus-like particles in tumor prevention. Intervirology 45:300–307

    Article  PubMed  CAS  Google Scholar 

  55. World Health Organization—International Agency for Research on Cancer (2007) Monograph on Human Papillomaviruses. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol 90

  56. Yuan H, Estes PA, Chen Y, Newsome J, Olcese VA, Garcea RL, Schlegel R (2001) Immunization with a pentameric L1 fusion protein protects against papillomavirus infection. J Virol 75:7848–7853

    Article  PubMed  CAS  Google Scholar 

  57. WHO | Immunization. http://www.who.int/topics/immunization/en/. Accessed 6 Sep 2011

Download references

Acknowledgments

We thank Rodney Lucas for the animal work, and Bruce Allan for technical assistance on pseudovirion neutralisation assays. We also thank Mark Whitehead, David Mutepfa and Cathy Pineo for their technical assistance. Thanks to Dr. Neil Christensen (Department of Pathology, Milton S. Hershey Medical Center, Hershey, Pennsylvania, PA, USA) for supplying monoclonal antibodies, and Dr. John Schiller (Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA) for the plasmids used in the HPV pseudovirion neutralisation assay. The South African Department of Science and Technology/National Research Foundation funded this project.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga I. Hitzeroth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, M., de Villiers, G.K., Shephard, E. et al. Development of human papillomavirus chimaeric L1/L2 candidate vaccines. Arch Virol 158, 2079–2088 (2013). https://doi.org/10.1007/s00705-013-1713-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1713-8

Keywords

Navigation