Skip to main content
Log in

Improvement of immunodetection of white spot syndrome virus using a monoclonal antibody specific for heterologously expressed icp11

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The icp11 gene encoding the highly abundant DNA mimic protein of white spot syndrome virus (WSSV) was cloned into the pTYB1 and pGEX-6P-1 expression vectors and introduced into E. coli by transformation. After induction, C-terminally intein-tagged ICP11 (ICP11-intein) and N-terminally glutathione-S-transferase (GST)-tagged ICP11 (GST-ICP11) proteins with molecular masses of 64 and 35 kDa were obtained. These proteins were purified by SDS-PAGE and used for immunization of Swiss mice for monoclonal antibody (MAb) production. Two MAbs specific for ICP11 were selected; these MAbs can be used to detect natural WSSV infection in Penaeus vannamei by dot blotting, western blotting or immunohistochemistry without cross-reaction with other shrimp tissues or other common shrimp viruses. The detection sensitivity of the MAbs was approximately 0.7 fmole/spot of GST-ICP11 as determined by dot blotting. These MAbs showed stronger immunoreactivity than other MAbs from previous studies that are specific for VP28 and VP19. A combination of MAbs specific for ICP11, VP28 and VP19 increased the detection sensitivity of WSSV during early infection to a sensitivity 250 times lower than that of one-step PCR. Therefore, the MAbs specific for ICP11 could be used to confirm and enhance the detection sensitivity for WSSV infection in shrimp using various types of antibody-based assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Flegel TW (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258:1–33

    Article  Google Scholar 

  2. Chang PS, Lo CC, Wang YC, Kou GH (1996) Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Dis Aquat Org 27:131–139

    Article  Google Scholar 

  3. Takahashi Y, Itami T, Maeda M, Suzuki N, Kasornchandra J, Supamattaya K, Khongpradit R, Boonyaratpalin S, Kondo M, Kawai K, Kusuda R, Hirono I, Aoki T (1996) Polymerase chain reaction (PCR) amplification of bacilliformvirus (RV-PJ) DNA in Penaeus japonicus Bate and systemic ectodermal and mesodermal baculovirus (SEMBV) DNA in Penaeus monodon Fabricius. J Fish Dis 19:399–403

    Article  CAS  Google Scholar 

  4. Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, Chang CF, Lui KF, Su MS, Wang CH, Kou GH (1996) White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Org 27:215–225

    Article  Google Scholar 

  5. Kimura T, Yamano K, Nakano H, Momoyama K, Hiraoka M, Inouye K (1996) Detection of penaeid rod-shaped DNA virus (PRDV) by PCR. Fish Pathol 31:93–98

    Article  CAS  Google Scholar 

  6. Durand SV, Redman RM, Mohney LL, Tang-Nelson K, Bonami JR, Lightner DV (2003) Qualitative and quantitative studies on the relative virus load of tails and heads of shrimp acutely infected with WSSV. Aquaculture 216:9–18

    Article  Google Scholar 

  7. Kono T, Savan R, Sakai M, Itami T (2004) Detection of white spot syndrome virus in shrimp by loop-mediated isothermal amplification. J Virol Methods 115:59–65

    Article  PubMed  CAS  Google Scholar 

  8. Mekata T, Sudhakaran R, Kono T, Supamattaya K, Linh NT, Sakai M, Itami T (2009) Real-time quantitative loop-mediated isothermal amplification as a simple method for detecting white spot syndrome virus. Lett Appl Microbiol 48:25–32

    Article  PubMed  CAS  Google Scholar 

  9. Jaroenram W, Kiatpathomchai W, Flegel TW (2009) Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Mol Cell Probes 23:65–70

    Article  PubMed  CAS  Google Scholar 

  10. Lo CF, Chang YS, Cheng CT, Kou GH (1998) PCR monitoring of cultured shrimp for white spot syndrome virus (WSSV) infection in growout ponds. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, Bangkok, pp 281–286

    Google Scholar 

  11. Tsai MF, Kou GH, Liu HC, Liu KF, Chang CF, Peng SE, Hsu HC, Wang CH, Lo CF (1999) Long-term presence of white spot syndrome virus (WSSV) in cultivated shrimp population without disease outbreaks. Dis Aquat Org 38:107–114

    Article  Google Scholar 

  12. Patil R, Palaksha KJ, Anil TM, Guruchannabasavanna Patil P, Shankar KM, Mohan CV, Sripada A (2008) Evaluation of an immunodot test to manage white spot syndrome virus (WSSV) during cultivation of the giant tiger shrimp Penaeus monodon. Dis Aquat Org 79:157–161

    Article  PubMed  Google Scholar 

  13. Nadala ECB, Loh PC (2000) Dot blot enzyme immunoassays for the detection of white spot virus and yellow-head virus of penaeid shrimp. J Virol Methods 84:175–179

    Article  PubMed  Google Scholar 

  14. You Z, Nadala ECB Jr, Yang J, van Hulten MCW, Loh PC (2002) Production of polyclonal antiserum specific to the 27.5 kDa envelope protein of white spot syndrome virus. Dis Aquat Org 51:77–80

    Article  PubMed  CAS  Google Scholar 

  15. Poulos BT, Pantoja CR, Bradley-Dunlop D, Aguilar J, Lightner DV (2001) Development and application of monoclonal antibodies for the detection of white spot syndrome virus of penaeid shrimp. Dis Aquat Org 47:13–23

    Article  PubMed  CAS  Google Scholar 

  16. Anil TM, Shankar KM, Mohan CV (2002) Monoclonal antibodies developed for sensitive detection and comparison of white spot syndrome virus isolates in India. Dis Aquat Org 51:67–75

    Article  PubMed  CAS  Google Scholar 

  17. Liu W, Wang YT, Tian DS, Yin ZC, Kwang J (2002) Detection of white spot syndrome virus (WSSV) of shrimp by means of monoclonal antibodied (MAbs) specific to an envelope protein (28 kDa). Dis Aquat Org 49:11–18

    Article  PubMed  CAS  Google Scholar 

  18. Chaivisuthangkura P, Tangkhabuanbutra J, Longyant S, Sithigorngul W, Rukpratanporn S, Menasveta P, Sithigorngul P (2004) Monoclonal antibodies against a truncated viral envelope protein (VP28) can detect white spot syndrome virus (WSSV) infections in shrimp. Sci Asia 30:359–363

    Article  CAS  Google Scholar 

  19. Chaivisuthangkura P, Longyant S, Rukpratanporn S, Srisuk C, Sridulyakul P, Sithigorngul P (2010) Enhanced white spot syndrome virus (WSSV) detection sensitivity using monoclonal antibody specific to heterologously expressed VP19 envelope protein. Aquaculture 299:15–20

    Article  CAS  Google Scholar 

  20. Shih HH (2004) Neutralization of white spot syndrome virus by monoclonal antibodies against viral envelope proteins. Taiwania 49:159–165

    Google Scholar 

  21. Powell JWB, Berge EJ, Browdy CL, Shepard EF (2006) Efficiency and sensitivity determination of Shrimple®, an immunochromatographic assay for white spot syndrome virus (WSSV), using quantitative realtime PCR. Aquaculture 257:167–172

    Article  CAS  Google Scholar 

  22. Sithigorngul W, Rukpratanporn S, Pecharaburanin N, Longyant S, Chaivisuthangkura P, Sithigorngul P (2006) A simple and rapid immunochromatographic test strip for detection of white spot syndrome virus (WSSV) of shrimp. Dis Aquat Org 72:101–106

    Article  PubMed  CAS  Google Scholar 

  23. Sithigorngul P, Rukpratanporn S, Chaivisuthangkura P, Sridulyakul P, Longyant S (2011) Simultaneous and rapid detection of white spot syndrome virus and yellow head virus infection in shrimp with a dual immunochromatographic strip test. J Virol Methods 173:85–91

    Article  PubMed  CAS  Google Scholar 

  24. Huang C, Zhang X, Lin Q, Xu X, Hew CL (2002) Characterization of a novel envelope protein (VP281) of shrimp white spot syndrome virus by mass spectrometry. J Gen Virol 83:2385–2392

    PubMed  CAS  Google Scholar 

  25. Zhang X, Huang C, Tang X, Zhuang Y, Hew CL (2004) Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 55:229–235

    Article  PubMed  CAS  Google Scholar 

  26. Tsai JM, Wang HC, Leu JH, Hsiao HH, Wang AH, Kou GH, Lo CF (2004) Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78:11360–11370

    Article  PubMed  CAS  Google Scholar 

  27. Xie X, Xu LM, Yang F (2006) Proteomic analysis of the major envelope and nucleocapsid proteins of white spot syndrome virus. J Virol 80:10615–10623

    Article  PubMed  CAS  Google Scholar 

  28. Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF (2009) Whispovirus. Curr Top Microbiol Immunol 328:197–227

    Article  PubMed  CAS  Google Scholar 

  29. Wang HC, Wang HC, Kou GH, Lo CF, Huang WP (2007) Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Dis Aquat Org 74:179–189

    Article  PubMed  CAS  Google Scholar 

  30. Wang HC, Wang HC, Leu JH, Kou GH, Wang AH, Lo CF (2007) Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev Comp Immunol 31:672–686

    Article  PubMed  CAS  Google Scholar 

  31. Wang HC, Wang HC, Ko TP, Lee YM, Leu JH, Ho CH, Huang WP, Lo CF, Wang AHJ (2008) White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. PNAS 105:20758–20763

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Köhler G, Milstein C (1976) Derivation of specific antibody producing tissue culture and tumor lines by cell fusion. Eur J Immunol 6:511–519

    Article  PubMed  Google Scholar 

  34. Mosmann TR, Bauman R, Williamson AR (1979) Mutations affecting immunoglobulin light chain secretion by myeloma cells. I. Functional analysis by cell fusion. Eur J Immunol 9:511–516

    Article  PubMed  CAS  Google Scholar 

  35. Sithigorngul P, Chauychuwong P, Sithigorngul W, Longyant S, Chaivisuthangkura P, Menasveta P (2000) Development of a monoclonal antibody specific to yellowhead virus (YHV) from Penaeus monodon. Dis Aquat Org 42:27–34

    Article  PubMed  CAS  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  37. Sithigorngul P, Hajimasalaeh W, Longyant S, Sridulyakul P, Rukpratanporn S, Chaivisuthangkura P (2009) Simple immunoblot and immunohistochemical detection of Penaeus stylirostris densovirus using monoclonal antibodies to viral capsid protein expressed heterologously. J Virol methods 162:126–132

    Article  PubMed  CAS  Google Scholar 

  38. Boonsanongchokying C, Sang-oum W, Sithigorngul P, Sriurairatana S, Flegel TW (2006) Production of monoclonal antibodies to polyhedrin of monodon baculovirus (MBV) from shrimp. Sci Asia 32:371–376

    Article  CAS  Google Scholar 

  39. Longyant S, Poyoi P, Chaivisuthangkura P, Tejankura T, Sithigorngul W, Sithigorngul P, Rukpratanporn S (2008) Specific monoclonal antibodies raised against Taura syndrome virus (TSV) capsid protein VP3 detect TSV in single and dual infections with white spot syndrome virus (WSSV). Dis Aquat Org 79:75–81

    Article  PubMed  CAS  Google Scholar 

  40. Sithigorngul P, Rukpratanporn S, Longyant S, Chaivisuthangkura P, Sithigorngul W, Menasveta P (2002) Monoclonal antibodies specific to yellow-head virus (YHV) of Penaeus monodon. Dis Aquat Org 49:71–76

    Article  PubMed  CAS  Google Scholar 

  41. Kunanopparat A, Chaivisuthangkura P, Senapin S, Longyant S, Rukpratanporn S, Flegel TW, Sithigorngul P (2011) Detection of infectious myonecrosis virus using monoclonal antibody specific to N and C fragments of the capsid protein expressed heterologously. J Virol Methods 171:141–148

    Article  PubMed  CAS  Google Scholar 

  42. Sithigorngul P, Stretton AOW, Cowden C (1991) A versatile dot-ELISA method with femtomole sensitivity for detecting small peptides. J Immunol Methods 141:23–32

    Article  PubMed  CAS  Google Scholar 

  43. Rout N, Citarasu T, Ravindran R, Murugan V (2005) Trancriptional and transitional expression profile of white spot syndrome viral (WSSV) gene in different organs of infected shrimp. Aquaculture 245:31–38

    Article  CAS  Google Scholar 

  44. Peng SE, Lo CF, Liu KF, Kou GH (1998) The transition from pre-patent to patent infection of white spot syndrome virus (WSSV) in Penaeus monodon triggered by pereiopod excision. Fish Pathol 33:395–400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Strategic Wisdom and Research Institute of Srinakharinwirot University and the Higher Commission of Education, Ministry of Education, by a graduate scholarship to Mrs. Ruthairat Siriwattanarat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paisarn Sithigorngul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siriwattanarat, R., Longyant, S., Chaivisuthangkura, P. et al. Improvement of immunodetection of white spot syndrome virus using a monoclonal antibody specific for heterologously expressed icp11. Arch Virol 158, 967–979 (2013). https://doi.org/10.1007/s00705-012-1569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1569-3

Keywords

Navigation