Skip to main content

Advertisement

Log in

Detection and sequencing of defective viral genomes in C6/36 cells persistently infected with dengue virus 2

Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue virus is the most important arbovirus that affects humans, and it can establish persistent infections, especially in insect-derived cell cultures. Defective viral genomes have been implicated in the establishment and maintenance of persistent infections with several flaviviruses; however, there exists almost no information concerning defective dengue virus genomes. Here, we report the detection of defective dengue 2 virus genomes in persistently infected mosquito C6/36 cells. The defective viral genomes were detected at a low ratio compared with the wild-type genome. Deletions of approximately 147 residues (222-368) were found in the E protein, and these mainly affected domain III (73 %) of the protein; deletions of approximately 153 residues (4-156) and 228 residues (597-825) were found in the methyltransferase and polymerase domains, respectively, of the NS5 protein. The truncated versions of NS5 could be detected by western blot only in the protein extracts derived from persistently infected cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Malavige GN, Fernando S, Fernando DJ, Seneviratne SL (2004) Dengue viral infections. Postgrad Med J 80:588–601

    Article  PubMed  CAS  Google Scholar 

  2. Leyssen P, De Clercq E, Neyts J (2000) Perspectives for the treatment of infections with Flaviviviridae. Clin Microbiol Rev 13:67–82

    Article  PubMed  CAS  Google Scholar 

  3. Mahoney R, Chocarro L, Southern J, Francis DP, Vose J, Margolis H (2011) Dengue vaccines regulatory pathways: a report on two meetings with regulators of developing countries. PLoS Med. doi:10.1371/e1000418

    PubMed  Google Scholar 

  4. Schlesinger RW, Stollar V, Guild GM, Igarashi A, Shenk TE, Peleg J (1977) The significant and nature of defective interfering viruses. Bull Schweiz Akad Med Wiss 33:229–242

    PubMed  CAS  Google Scholar 

  5. Blair CD, Adelman ZN, Olson KE (2000) Molecular strategies for interrupting arthopod-borne virus transmission by mosquitoes. Clin Microbiol 14:651–661

    Google Scholar 

  6. Perrault J (1981) Origin and replication of defective interfering particles. Curr Top Microbiol Immunol 93:151–207

    Article  PubMed  CAS  Google Scholar 

  7. Nayak DP, Chambers TM, Akkina RK (1985) Defective-interfering (DI) RNAs of influenza viruses: origin, structure, expression, and interference. Curr Top Microbiol Immunol 114:103–151

    Article  PubMed  CAS  Google Scholar 

  8. Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC (2006) Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236–238

    Article  PubMed  CAS  Google Scholar 

  9. Li D, Lott WB, Lowry K, Jones A, Thu HM, Aaskov J (2011) Defective interfering viral particles in acute dengue infections. PLoS One 6(4):e19447. doi:10.1371/journal.pone.0019447

    Article  PubMed  CAS  Google Scholar 

  10. Poidinger M, Coelen RJ, Mackenzie JS (1991) Persistent infection of vero cells by the flavivirus Murray Valley encephalitis virus. J Gen Virol 72:573–578

    Article  PubMed  Google Scholar 

  11. Randolph V, Hardy JL (1988) Phenotypes of St Louis encephalitis mutants produced in persistently infected mosquito cell cultures. J Gen Virol 69:2199–2207

    Article  PubMed  CAS  Google Scholar 

  12. Igarashi A (1978) Isolation of a singh’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol 40:531–544

    Article  PubMed  CAS  Google Scholar 

  13. Tsai KN, Tsang SF, Huang CH, Chang RY (2007) Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus Res 124:139–150

    Article  PubMed  CAS  Google Scholar 

  14. Igarashi A (1979) Characteristics of Aedes albopictus cells persistently infected with dengue viruses. Nature 280:690–691

    Article  PubMed  CAS  Google Scholar 

  15. Chen WJ, Chen SL, Fang AH (1994) Phenotypic characteristics of dengue 2 virus persistently infected in a C6/36 clone of Aedes albopictus cells. Intervirology 37:25–30

    PubMed  CAS  Google Scholar 

  16. Kuno G, Oliver A (1989) Maintaining mosquito cell lines at high temperatures: effects on the replication of flaviviruses. In Vitro Cell Dev Biol 25:193–196

    Article  PubMed  CAS  Google Scholar 

  17. Gould EA, Clegg JCS (1991) Growth, titration and purification of alphaviruses and flaviviruses. In: Mahy BWJ (ed) Virology: a practical approach. IRL Press, Oxford, pp 43–78

    Google Scholar 

  18. U.S Department of Health and Humans Services, Pan American Health Organization (1981) Dengue laboratory diagnostic procedures for the Americas. Center for Disease Control & Pan American Sanitary Bureau, San Juan & Washington

  19. Reyes-Del Valle J, Chávez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  PubMed  CAS  Google Scholar 

  20. Kurane I, Kontny U, Janus J, Ennis FA (1990) Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Arch Virol 110:91–101

    Article  PubMed  CAS  Google Scholar 

  21. Takasaki T, Takada K, Kurane I (2001) Electron microscopic study of persistent dengue virus infection: analysis using a cell line persistently infected with dengue-2 virus. Intervirology 44:48–54

    Article  PubMed  CAS  Google Scholar 

  22. Dittmar D, Castro A, Haines H (1982) Demostration of interference between dengue virus types in cultured mosquito cells using antibody probes. J Gen Virol 59:273–282

    Article  PubMed  CAS  Google Scholar 

  23. Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE (2001) Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol Biol 10:265–273

    Article  PubMed  CAS  Google Scholar 

  24. Caplen NJ, Zheng Z, Falgout B, Morgan RA (2002) Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther 6:243–251

    Article  PubMed  CAS  Google Scholar 

  25. Burivong P, Pattanakitsakul SN, Thongrungkiat S, Malasit P, Flegel TW (2004) Markedly reduced severity of dengue virus infection in mosquito cell cultures persistently infected with Aedes albopictus densovirus (AalDNV). Virology 329:261–269

    Article  PubMed  CAS  Google Scholar 

  26. Elliot RM, Wilkie ML (1986) Persistent infection of Aedes albopictus C6/36 cells by Bunyamwera virus. Virology 150:21–32

    Article  Google Scholar 

  27. Scallan MF, Elliot RM (1992) Defective RNAs in mosquito cells persistently infected with Bunyamwera virus. J Gen Virol 73:53–60

    Article  PubMed  CAS  Google Scholar 

  28. Kanthong N, Khemnu N, Sriurairatana S, Pattanakitsakul SN, Malasit P, Flegel TW (2008) Mosquito cells accommodate balanced, persistent co-infections with densovirus and dengue virus. Dev Comp Immunol 32:1063–1075

    Article  PubMed  CAS  Google Scholar 

  29. Lancaster MU, Hodgetts SI, Mackenzie JS, Urosevic N (1998) Characterization of defective viral RNA produced during persistent infection of vero cells with Murray Valley Encephalitis virus. J Virol 72:2474–2482

    PubMed  CAS  Google Scholar 

  30. Vlaycheva LA, Chambers TJ (2002) Neuroblastoma cell-adapted yellow fever 17D virus: characterization of a viral variant associated with persistent infection and decreased virus spread. J Virol 76:6172–6184

    Article  PubMed  CAS  Google Scholar 

  31. Schmaljohn C, Blair CD (1977) Persistent infection of cultured mammalian cells by Japanese Encephalitis virus. J Virol 24:580–589

    PubMed  CAS  Google Scholar 

  32. Yoon SW, Lee SY, Won SY, Park SH, Park SY, Jeong YS (2006) Characterization of homologous defective interfering RNA during persistent infection of Vero cells with Japanese encephalitis virus. Mol Cells 21:112–120

    PubMed  CAS  Google Scholar 

  33. Chen LK, Liao CL, Lin CG, Lai SC, Liu CI, Ma SH, Huang YY, Lin YL (1996) Persistence of Japanese encephalitis virus is associated with abnormal expression of the nonstructural protein NS1 in host cells. Virology 217:220–229

    Article  PubMed  CAS  Google Scholar 

  34. Feng G, Takegami T, Zhao G (2002) Characterization and E protein expression of mutant strains during persistent infection of KN73 cells with Japanese encephalitis virus. Chin Med J 115:1324–1327

    PubMed  CAS  Google Scholar 

  35. Modis Y, Ogata S, Clements D, Harrison SC (2003) A lingand-binding pocket in the dengue virus envelope protein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed  CAS  Google Scholar 

  36. Rey FA (2003) Dengue virus envelope glycoproteins structure: new insight into its interaction during viral entry. Proc Natl Acad Sci USA 100:6899–6901

    Article  PubMed  CAS  Google Scholar 

  37. Kapoor M, Zhang L, Ramachandra M, Kusukawa J, Ebner KE, Padmanabhan R (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106

    Article  PubMed  CAS  Google Scholar 

  38. Egloff MP, Decroly E, Malet H, Selisko B, Benarroch D, Ferron F, Canard B (2007) Structural and functional analysis of methylation and 5’-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372:723–736

    Article  PubMed  CAS  Google Scholar 

  39. Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2’-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY, Li H (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903

    Article  PubMed  CAS  Google Scholar 

  41. Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH, Keenan SM, Peersen OB (2009) Analysis of Flavivirus NS5 methyltransferase cap binding. J Mol Biol 385:1643–1654

    Article  PubMed  CAS  Google Scholar 

  42. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression and replication. Annu Rev Microbiol 44:649–688

    Article  PubMed  CAS  Google Scholar 

  43. Yap TL, Xu T, Cnehn YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J (2007) Cystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-Angstrom resolution. J Virol 81:4753–4765

    Article  PubMed  CAS  Google Scholar 

  44. Tan BH, Sugrue RJ, Yap EH, Chan YC, Tan YH (1996) Recombinant dengue type 1 virus NS5 protein expresssed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216:317–325

    Article  PubMed  CAS  Google Scholar 

  45. Ashour J, Laurent-Rolle M, Shi PY, García-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418

    Article  PubMed  CAS  Google Scholar 

  46. Brooks AJ, Johansson M, John AV, Xu Y, Jans DA, Vasudevan SG (2002) The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently importin B1 and importin α/β-recognized nuclear localization signals. J Biol Chem 277:36399–36407

    Article  PubMed  Google Scholar 

  47. Pryor MJ, Rawlinson SM, Butcher RE, Barton CL, Waterhouse TA, Vasudevan SG, Bardin PG, Wright PJ, Jans DA, Davidson AD (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin α/β-recognized nuclear localization sequences is integral to viral infection. Traffic 8:795–807

    Article  PubMed  CAS  Google Scholar 

  48. Baron OL, Ursic-Bedoya RJ, Lowenberger CA, Ocampo CB (2010) Differential gene expresión from midguts of refractory and susceptible lines of the mosquito. Aedes aegypti, infected with Dengue-2 virus. J Insect Sci 10:1–23

    Article  Google Scholar 

  49. Guo X, Xu Y, Bian G, Pike AD, Kie Y, Xi Z (2010) Response of the mosquito protein interaction network to dengue infection. BMC genomics 11:380. doi:10.1186/1471-2164-11-380

    Article  PubMed  Google Scholar 

  50. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE (2004) RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of anopheles gambiae. Proc Natl Acad Sci USA 101(49):17240–17245

    Article  PubMed  CAS  Google Scholar 

  51. Myles KM, Wiley MR, Morazzani EM, Adelman ZN (2008) Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci USA 105(50):19938–19943

    Article  PubMed  CAS  Google Scholar 

  52. Campbell CL, Keene KM, Brackney DE, Olson KE, Blair CD, Wilusz J, Foy BD (2008) Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8:47. doi:10.1186/147-2180-8-47

    Article  PubMed  Google Scholar 

  53. Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AWE, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog 5(2):e1000299. doi:10.1371/journal.ppat.1000299

    Article  PubMed  Google Scholar 

  54. Brackney DE, Beane JE, Ebel GD (2009) RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5(7):e1000502. doi:10.1371/journal.ppat.1000502

    Article  PubMed  Google Scholar 

  55. Hess AM, Prasad AN, Ptitsyn A, Ebel GD, Olson KE, Barbacioru C, Monighetti C, Campbell CL (2011) Small RNA profiling of Dengue virus-mosquito interactions implicates the PIWI RNA pathway in anti-viral defense. BMC Microbiol 11:45

    Article  PubMed  CAS  Google Scholar 

  56. Scott JC, Brackney DE, Campbell CL, Bondu-Hawkins V, Hjelle B, Ebel GD, Olson KE, Blair CD (2010) Comparison of Dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. Plos Negl Trop Dis 4(10):e848. doi:10.1371/journal.pntd.0000848

    Article  PubMed  Google Scholar 

  57. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD (2010) C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. Plos Negl Trop Dis 4(10):e856. doi:10.1371/journal.pntd.0000856

    Article  PubMed  Google Scholar 

  58. Morazzani EM, Wiley MR, Murreddu MG, Adelman ZN, Myles KM (2012) Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog 8(1):e1002470. doi:10.1371/journal.ppat.1002470

    Article  PubMed  CAS  Google Scholar 

  59. Vodovar N, Bronkhorst AW, van Cleef KWR, Miesen P, Blanc H, van Rij RP, Saleh MC (2012) Arbovirus-derived piRNAs exhibit a ping-pong signature in mosquito cells. Plos one 7(1):e30861. doi:10.1371/journal.pone.0030861

    Article  PubMed  CAS  Google Scholar 

  60. Lan Q, Fallon AM (1990) Small heat shock proteins distinguish between two mosquito species and confirm identity of their cell lines. Am J Trop Med Hyg 43:669–676

    PubMed  CAS  Google Scholar 

  61. Wikan N, Kuadkitkan A, Smith DR (2009) The Aedes aegypti cell line CCL-125 is dengue virus permissive. J Virol Methods 157:227–230

    Article  PubMed  CAS  Google Scholar 

  62. Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4(7):e1000098. doi:10.1371/journal.ppat.1000098

    Article  PubMed  Google Scholar 

  63. Ramires JL, Dimopoulos G (2010) The toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol 34(6):625–629. doi:10.1016/j.dci.2010.01.006

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Padmanaban (Georgetown University, Washington, USA) for the anti-NS5 antibodies; Alejandro Monsalvo Reyes (FES Iztacala-UNAM), Dr. Laura Ongay, and B. Sc. Guadalupe Codiz (Instituto de Fisiología Celular-UNAM) for the DNA sequencing; and Dr. José Tapia and Nicolás Villegas (CINVESTAV-IPN) for their assistance in the northern blot hybridization. This project was supported by the Secretaría de Investigación y Posgrado of Instituto Politécnico Nacional (SIP 20010787, 20080104, 20090158, and 20100041) and Consejo Nacional de Ciencia y Tecnología (CONACYT) (Projects I39304-N and P160883). Ariadna Berenice Juárez received a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACYT) and PIFI (IPN). Tania Olivia Vega-Almeida received a scholarship from the Instituto Politécnico Nacional and Instituto de Ciencia y Tecnología D.F. Dr. Juan Salas and Mónica De Nova have fellowships from the COFAA and EDI (IPN).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Santiago Salas-Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juárez-Martínez, A.B., Vega-Almeida, T.O., Salas-Benito, M. et al. Detection and sequencing of defective viral genomes in C6/36 cells persistently infected with dengue virus 2. Arch Virol 158, 583–599 (2013). https://doi.org/10.1007/s00705-012-1525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1525-2

Keywords

Navigation