Skip to main content

Advertisement

Log in

Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Germicidal UV (also known as UVC) provides a means to decontaminate infected environments as well as a measure of viral sensitivity to sunlight. The present study determined UVC inactivation slopes (and derived D37 values) of viruses dried onto nonporous (glass) surfaces. The data obtained indicate that the UV resistance of Lassa virus is higher than that of Ebola virus. The UV sensitivity of vaccinia virus (a surrogate for variola virus) appeared intermediate between that of the two virulent viruses studied. In addition, the three viruses dried on surfaces showed a relatively small but significant population of virions (from 3 to 10 % of virus in the inoculum) that appeared substantially more protected by their environment from the effect of UV than the majority of virions tested. The findings reported in this study should assist in estimating the threat posed by the persistence of virus in environments contaminated during epidemics or after an accidental or intentional release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bockstahler LE, Lytle CD (1977) Radiation enhanced reactivation of nuclear replicating mammalian viruses. Photochem. Photobiol 25:477–482

    Article  PubMed  CAS  Google Scholar 

  2. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, O’Toole T, Ascher MS, Bartlett J, Breman JG, Eitzen E, Hamburg M, Hauer J, Henderson DA, Johnson RT, Kwik G, Layton M, Lillibridge S, Nabel GJ, Osterhom MT, Perl TM, Russell P, Tonat K (2002) “Hemorrhagic Fever Viruses as Biological Weapons: Medical and Public Health Management. J. American Medical Association 287:2391–2405

    Article  Google Scholar 

  3. Bossart W, Nuss DI, Paoletti E (1978) Effect of UV irradiation on the expression of vaccinia virus gene products synthesized in a cell free system coupling transcription and translation. J. Virology 26:673–680

    PubMed  CAS  Google Scholar 

  4. Buckley SM, Casals J (1970) Lassa fever, a new virus disease of man from West Africa. III. Isolation and characterization of the virus. Am. J. Trop Med Hyg 19:680–691

    PubMed  CAS  Google Scholar 

  5. Calkins J, Thordadottir T (1980) The ecological significance of solar UV radiation on aquatic organisms. Nature 283:563–566

    Article  Google Scholar 

  6. Downie AW, Dumbell KR (1947) Survival of variola virus in dried exudates and crusts from smallpox patients. The Lancet 252:550–553

    Article  Google Scholar 

  7. Elliott LH, McCormick JB, Johnson KM (1982) Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation. J. Clin Microbiol 16:704–708

    PubMed  CAS  Google Scholar 

  8. Feldman H, Jones S, Klenk HD, Schnittler HJ (2003) Ebola virus: from discovery to vaccine. Nat. Rev. Immunol 3:677–685

    Article  Google Scholar 

  9. Fenner F (1977) The eradication of smallpox. Prog. Med. Virol 23:1–21

    PubMed  CAS  Google Scholar 

  10. Fenner F. (1990) Poxviruses. In Fields Virology (Edited by B.N. Fields and D.M. Knipe) 2nd Edition. pp. 2113-2133. Raven Press, New York

  11. Fields, B. N. and D.M. Knipe (Editors) (1990) Fields Virology. 2nd Edition. Raven Press, New York

  12. Giese AC (1976) Living with the sun’s ultraviolet rays. Plenum Press, New York

    Google Scholar 

  13. Knipe, D. M. and P.M. Howley (Editors) (2001). Fields Virology. 4th Edition, Lippincott Williams and Wilkins. Philadelphia

  14. Lytle CD, Aaronson SA, Harvey E (1972) Host cell reactivation in mammalian cells. II. Survival of herpes simplex virus and vaccinia in normal human and xeroderma pigmentosum cells. Int. J. Radiat. Biol 22:159–165

    CAS  Google Scholar 

  15. Lytle CD, Benane SG, Stafford JE (1976) Host cell reactivation in mammalian cells. V. Photoreactivation studies with herpesvirus in marsupial and human cells. Photochem. Photobiol 23:331–336

    Article  PubMed  CAS  Google Scholar 

  16. Lytle CD, Sagripanti J-L (2005) Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virology 79:14244–14252

    Article  PubMed  CAS  Google Scholar 

  17. McMormick JB (1990) Arenaviruses. In: Virology Fields (ed) B.N. Fields and D.M. Knipe) 2nd Edition. Raven Press, New York, pp 1245–1267

    Google Scholar 

  18. Nicholson WL, Shuerger AC, Setlow P (2005) The solar UV environment and bacterial spore UV resistance: considerations for earth-to-mars transport by natural processess and human spaceflight. Mutation Res 517:249–264

    Google Scholar 

  19. Peters, C.J. (1996) “Emerging Infections-Ebola and Other Filoviruses.” Western Journal of Medicine 164.1: 36-8..

    Google Scholar 

  20. Pirtle EC, Beran GW (1991) Virus survival in the environment. Rev. sci. tech. Off. int. Epiz 10(3):733–748

    CAS  Google Scholar 

  21. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am. J. Hygiene 27:493–497

    Google Scholar 

  22. Sagripanti J-L, Carrera M, Insalaco J, Ziemski M, Rogers J, Zandomeni R (2007) Virulent spores of bacillus anthracis and other Bacillus species deposited on solid surfaces have similar sensitivity to chemical decontaminants. J. Applied Microbiol 102:11–226

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the In-House Laboratory Independent Research (ILIR) funds from the Research and Technology Directorate, Edgewood Chemical Biological Center, Research Development and Engineering Command, US Army. The valuable assistance with Ebola and Lassa viruses provided under U.S. Federal contract by Dr. Ricardo Carrion at the Southwest Foundation for Biomedical Research (San Antonio, Texas) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Luis Sagripanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagripanti, JL., Lytle, C.D. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch Virol 156, 489–494 (2011). https://doi.org/10.1007/s00705-010-0847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0847-1

Keywords

Navigation