Skip to main content

Advertisement

Log in

Evaluation of spatial and temporal characteristics of GNSS-derived ZTD estimates in Nigeria

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study presents an in-depth analysis to comprehend the spatial and temporal variability of zenith tropospheric delay (ZTD) over Nigeria during the period 2010–2014, using estimates from Global Navigation Satellite Systems (GNSS) data. GNSS data address the drawbacks in traditional techniques (e.g. radiosondes) by means of observing periodicities in ZTD. The ZTD estimates show weak spatial dependence among the stations, though this can be attributed to the density of stations in the network. Tidal oscillations are noticed at the GNSS stations. These oscillations have diurnal and semi-diurnal components. The diurnal components as seen from the ZTD are the principal source of the oscillations. This upshot may perhaps be ascribed to temporal variations in atmospheric water vapour on a diurnal scale. In addition, the diurnal ZTD cycles exhibited noteworthy seasonal dependence, with larger amplitudes in the rainy (wet) season and smaller ones in the harmattan (dry) season. Notably, the stations in the northern part of the country reach very high amplitudes in the months of June, July and August at the peak of the wet season, characterized by very high rainfall. This pinpoints the fact that in view of the small amount of atmospheric water vapour in the atmosphere, usually around 10%, its variations greatly influence the corresponding diurnal and seasonal discrepancies of ZTD. This study further affirms the prospective relevance of ground-based GNSS data to atmospheric studies. GNSS data analysis is therefore recommended as a tool for future exploration of Nigerian weather and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamowski J, Prokoph A (2013) Assessing the impacts of the urban heat island effect on streamflow patterns in Ottawa, Canada. J Hydrol 496(2013):225–237. doi:10.1016/j.jhydrol.2013.05.032

    Article  Google Scholar 

  • Ahmed F, Hunegnaw A, Teferle FN, and Bingley R (2015) Analysis of global climate variability from homogenously reprocessed ground-based GNSS measurements. Geophysical Research Abstracts Vol. 17. EGU2015-8981, 2015 EGU General Assembly

  • Altamimi Z, Collilieux X, Ḿetivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 85(8):457–473

    Article  Google Scholar 

  • Andrei C-O, Chen R (2009) Assessment of time-series of troposphere zenith delays derived from the Global Data Assimilation System numerical weather model. GPS Solutions 13(2):109. doi:10.1007/s10291-008-0104-1

    Article  Google Scholar 

  • Anselin L (1992) Spatial data analysis with GIS: An introduction to application in the social sciences. National Centre for Geographic Information and Analysis, University of California, Santa Barbara, CA 93106. Technical Report 92–10, pp 1–53. http://www.ncgia.ucsb.edu/technical-reports/PDF/92-10.pdf

  • Anselin L (2003) GeoDa 0.9 User's Guide. Centre for the spatial integration of social sciences and spatial analysis laboratory. Department of Geography, University of Illinois, Urbana-Champaign. http://www.sal.agecon.uinc/edu/csiss/pdf/geoda093.pdf

  • Anselin L (2005) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115. doi:10.1111/j.1538-4632.1995.tb00338.x

    Article  Google Scholar 

  • Batisani N (2011) Spatio-temporal ephemeral stream flow as influenced by climate variability in Botswana. J Geogr Sci 21(3):417–428. doi:10.1007/s11442-011-0854-5

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. Journal of Geophysical Research B: Solid Earth 111(2):B02406

    Google Scholar 

  • Breusch T, Pagan A (1979) A simple test of heteroscedasticity and random coefficient variation. Econometrica 47:1287–1294

    Article  Google Scholar 

  • Cliff AD, Ord JK (1975) The choice of a test for spatial autocorrelation. In: Davies JC, McCullagh MJ (eds) Display and analysis of spatial data. John Wiley and Sons, London, pp 54–77

    Google Scholar 

  • Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431 JSTOR 2286348

    Article  Google Scholar 

  • Emardson TR, Elegered TR, Johansson JM (1998) Three months of continuous monitoring of atmospheric water vapour with a network of global positioning system receivers. J Geophys Res 103:1807–1820. doi:10.1029/97JD03015

    Article  Google Scholar 

  • Geary R (1954) The contiguity ratio and statistical mapping. The Incorporated Statistician 5:115–145

    Article  Google Scholar 

  • Gendt G, Schmid R (2005) [IGSMAIL-5189]: Planned changes to IGS antenna calibrations. http://igscb.jpl.nasa.gov/mail/igsmail/2005/msg00111.html. Accessed May 2014

  • Hagan ME, Forbes, JM, and Richmond A (2003) Atmospheric Tides. Encyclopaedia of Atmospheric Sciences, 159–165. doi:10.1016/B0-12-227090-8/00409-7

  • Haining RP (2003) Spatial data analysis: theory and practice. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Herring TA, King RW, McClusky SC (2006) Introduction to GAMIT/GLOBK. Release 10.3, Department of Earth, Atmospheric and Planetary Sciences. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Higazi SF, Abdel-Hady DH, Al-Oulfi SA (2013) Application of spatial regression models to income poverty ratios in middle delta contiguous counties in Egypt. Pakjstatoperres IX(1):93–110

    Google Scholar 

  • Humphreys TE, Kelley MC, Huber N, Kintner JM (2005) The semidiurnal variation in GPS-derived zenith neutral delay. Geophys Res Lett 32(24):1–4. doi:10.1029/2005GL024207

    Article  Google Scholar 

  • Isioye OA, Combrinck L, and Botai OJ (2014) Modelling of atmospheric parameters over Nigeria based on GNSS data. A presentation at the United Nations/Abdus Salam International Centre for Theoretical Physics Workshop on the use of Global Navigation Satellite Systems for scientific applications, Trieste, Italy, 1–5 December 2014. http://www.unoosa.org/pdf/sap/2014/trieste-gnss/23.pdf

  • Isioye OA, Combrinck L, Botai JO, Munghemezulu C (2015) The potential of observing African weather with GNSS remote sensing. Adv Meteorol 2015:723071. doi:10.1155/2015/723071

    Article  Google Scholar 

  • Isioye OA, Combrinck L, Botai OJ (2016) Modelling weighted mean temperature in west African region: implication for GNSS meteorology. Meteorol Appl 23(4):614–632. doi:10.1002/met.1584

    Article  Google Scholar 

  • Jatau B, Rui M, Adeyemi A, Nuno G (2010) NIGNET: the new permanent GNSS network of Nigeria. FIG Congress 2010: Facing the Challenges–Building the Capacity, Sydney, Australia. http://fig.net/pub/fig2010/papers/fs02h%5Cfs02h_jatau_fernandes_et_al_4549.pdf. Accessed 11–16 April 2010

  • Jin S, Luo OF, Gleason S (2009) Characterization of diurnal cycles in ZTD from a decade of global GPS observations. J Geod 83:537–545. doi:10.1007/s00190-008-0264-3

    Article  Google Scholar 

  • Jin SG, Park J, Cho J, Park P (2007) Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J Geophys Res 112:D09110. doi:10.1029/2006JD007772

    Article  Google Scholar 

  • Karmeshu M (2012) Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test – A Case Study to Assess Climate Change on Select States in the North eastern United States. Master of Environmental Studies, Capstone Projects, University of Pennsylvania Scholarly Commons. http://repository.upenn.edu/cgi/viewcontent.cgi?article=1045&context=mes_capstones

  • Kwiatkowski D, Phillips PCB, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against alternative of a unit root. J Econ 54:159–178

    Article  Google Scholar 

  • MacKinnon JG (1996) Numerical distribution functions for unit root and cointegration tests. J Appl Econ 11:601–618

    Article  Google Scholar 

  • Mithell JM, Dzerdzeevskii B, Flohn H et al (1966) Climate Change (Report of a working group of the commission for climatology). WMO Technical Note No. 79, World Meteorological Organization

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  Google Scholar 

  • Naibbi AI, Ibrahim SS (2014) An assessment of the existing continuously operating reference stations (CORS) in Nigeria: an exploration using geographical information system (GIS). American Journal of Geographic Information Systems 3(4):147–157. doi:10.5923//j.ajgis.20140304.01

    Google Scholar 

  • Nwilo P, Dodo J, Edozie R, Adebohehin A (2013) The Nigerian Geocentric Datum (NGD2012): Preliminary Results. FIG Working Week 2013: Environment for Sustainability, 6–10 May 2013, Abuja, Nigeria. www.fig.net/pub/fig2013/papers/.../TS01B_nwilo_dodo_et_al_6524.pdf

  • Oginni A, Adebamowo M (2013) An evaluation of the socio-cultural effects of climate change on vulnerable Africa: making a case for urgent action towards adaptation in Nigeria. British Journal of Arts and Social Sciences 11(II):2046–9578 http://www.bjournal.co.uk/BJASS.aspx

    Google Scholar 

  • Paun M, Chen T, Nassar R (2009) Spectral analysis on Tripolar Laplacian electrocardiogram. Romanian Journal of Information Science and Technology 12(1):91–100

    Google Scholar 

  • Raju CS, Saha K, Parameswaran K (2009) Signature of atmospheric oscillation in GPS measured tropospheric delay. J Atmos Sol Terr Phys 71(17):1784–1793. doi:10.1016/j.jastp.2009.06.011

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In The Use of Artificial Satellites for Geodesy, S. W. Henriksen S.W., Mancini A. and Chovitz, B.H., (Eds.), vol. 15 of Geophysics Monograph Series, 247–252, American Geophysical Union (AGU), AIAA, NOAA, U.S.ATC,Washington, DC. Spilker J. J., 1996. Tropospheric Effects on GPS; In: Spilker and Parkinson, GPS Theory and Applications, vol 1, progress in Astronautics and Aeronautics, 1 (163): 517

  • Stoew B, Elgered G (2004) Characterization of atmospheric parameter using a ground based GPS network in North Europe. J Meteorol Soc Jpn 82(1B):587–596

    Article  Google Scholar 

  • Teke K, Boehm J, Nilsson T, Schuh H, Steigeberger P, Dach P, Heinkelman R, Willis P, Haas R, Garcia-Espada S, Hobiger T, Pchikawa R, Shimizu S (2011) Multi-technique comparison of troposphere zenith delays and gradients during CONT08. J Geod 85(7):395–493. doi:10.1007/s00190-010-0434-y

    Article  Google Scholar 

  • Teng H, Zhou Shi Z, Ma Z, Li Y (2014) Estimating spatially downscaled rainfall by regression kriging using TRMM precipitation and elevation in Zhejiang Province, southeast China. Int J Remote Sens 35(22):7775–7794. doi:10.1080/01431161.2014.976888

    Article  Google Scholar 

  • Tian J, Fernandez GCJ (1999) Seasonal trend analysis of monthly water quality data. Proceedings of the 7th Annual Western users of SAS software regional users group, pp 229–234. www.ag.unr.edu/gf/pdf/joyce.pdf

  • Ware R, Fulker D, Stein S, Anderson D, Avery S, Clark R, Droegemeier K, Kuettner J, Minster J, Sorooshian S (2000) SuomiNet: a real-time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677

    Article  Google Scholar 

Download references

Acknowledgements

Support and funding for this study was provided by the Tertiary Education Trust Fund (TET Fund) of Nigeria, Surveyors Registration Council of Nigeria (SURCON) and University of Pretoria PhD Research Support grant to the first author.

Author information

Authors and Affiliations

Authors

Contributions

OAI collected all the data required for the study. Processing of all data, statistical analysis that followed and drafting of the manuscript was done by OAI. LC and JB provided technical advice and guidance. The final manuscript was examined and accepted by all three authors.

Corresponding author

Correspondence to Olalekan Adekunle Isioye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isioye, O.A., Combrinck, L. & Botai, J. Evaluation of spatial and temporal characteristics of GNSS-derived ZTD estimates in Nigeria. Theor Appl Climatol 132, 1099–1116 (2018). https://doi.org/10.1007/s00704-017-2124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2124-7

Navigation