Skip to main content

Advertisement

Log in

Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971–2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015–2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1):28–40

    Article  Google Scholar 

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675

    Article  Google Scholar 

  • Ashfaq M, Ghosh S, Kao SC, Bowling LC, Mote P, Touma D, Rauscher SA, Diffenbaugh NS (2013) Near-term acceleration of hydroclimatic change in the western US. J Geophys Res-Atmos 118(19):10–676

    Article  Google Scholar 

  • Avanzi F, De Michele C, Ghezzi A (2014) Liquid-solid partitioning of precipitation along an altitude gradient and its statistical properties: an Italian case study. American Journal of Climate Change 3:71–82

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309

    Article  Google Scholar 

  • Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Tapash D, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319(5866):1080–1083

    Article  Google Scholar 

  • Belle GV, Hughes JP (1984) Nonparametric tests for trend in water quality. Water Resour Res 20(1):127–136

    Article  Google Scholar 

  • Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor Appl Climatol 76(3–4):125–140

    Article  Google Scholar 

  • Bocchiola D (2014) Long term (1921–2011) hydrological regime of alpine catchments in northern Italy. Adv Water Resour 70:51–64

    Article  Google Scholar 

  • Caloiero T (2015) Analysis of rainfall trend in New Zealand. Environmental Earth Sciences 73(10):6297–6310

    Article  Google Scholar 

  • Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett 41(16):5904–5911

    Article  Google Scholar 

  • Changchun X, Yaning C, Weihong L, Yapeng C, Hongtao G (2008) Potential impact of climate change on snow cover area in the Tarim River basin. Environ Geol 53(7):1465–1474

    Article  Google Scholar 

  • Chen J, Brissette FP (2014) Comparison of five stochastic weather generators in simulating daily precipitation and temperature for the Loess Plateau of China. Int J Climatol 34(10):3089–3105

    Article  Google Scholar 

  • Czyzowska-Wisniewski EH, Van Leeuwen WJD, Hirschboeck KK, Marsh SE, Wisniewski WT (2015) Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network. Remote Sens Environ 156:403–417

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65

    Article  Google Scholar 

  • Diaz HF, Bradley RS, Ning L (2014) Climatic changes in mountain regions of the American cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res 46(4):735–743

    Article  Google Scholar 

  • Durand Y, Giraud G, Laternser M, Etchevers P, Mérindol L, Lesaffre B (2009) Reanalysis of 47 years of climate in the French Alps (1958-2005): climatology and trends for snow cover. J Appl Meteorol Clim 48(12):2487–2512

    Article  Google Scholar 

  • Fan X, Wang M (2011) Change trends of air temperature and precipitation over Shanxi Province, China. Theor Appl Climatol 103(3–4):519–531. doi:10.1007/s00704-010-0319-2

    Article  Google Scholar 

  • Fathian F, Morid S, Kahya E (2014) Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theor Appl Climatol 119(3–4):443–464

    Google Scholar 

  • Fiddes SL, Pezza AB, Barras V (2014) A new perspective on Australian snow. Atmos Sci Lett. doi:10.1002/asl2.549

    Google Scholar 

  • Firat M, Dikbas F, Koc AC, Gungor M (2012) Analysis of temperature series: estimation of missing data and homogeneity test. Meteorol Appl 19(4):397–406

    Article  Google Scholar 

  • Fu G, Yu J, Zhang Y, Hu S, Ouyang R, Liu W (2011) Temporal variation of wind speed in China for 1961–2007. Theor Appl Climatol 104(3–4):313–324

    Article  Google Scholar 

  • Gohari A, Eslamian S, Abedi-Koupaei J, Bavani AM, Wang D, Madani K (2013) Climate change impacts on crop production in Iran’s Zayandeh-Rud River basin. Sci Total Environ 442:405–419

    Article  Google Scholar 

  • Govindaraju RS (2013) Special issue on data-driven approaches to droughts. J Hydrol Eng 18(7):735–736

    Article  Google Scholar 

  • Gu G, Adler RF (2013) Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? Clim Dynam 40(11–12):3009–3022

    Article  Google Scholar 

  • Guo L, Li L (2014) Variation of the proportion of precipitation occurring as snow in the tian Shan Mountains, China. Int J Climatol 35(7):1379–1393. doi:10.1002/joc.4063

    Article  Google Scholar 

  • Hall J, Arheimer B, Borga M, Brázdil R, Claps P, Kiss A, Kjeldsen TR, Kriauciuniene J, Kundzewicz ZW, Lang M, Llasat MC, Macdonald N, Mcintyre N, Mediero L, Merz B, Merz R, Molnar P, Montanari A, Neuhold C, Parajka J, Perdigão RAP, Plavcová L, Rogger M, Salinas JL, Sauquet E, Schär C, Szolgay J, Viglione A, Blöschl G (2014) Understanding flood regime changes in Europe: a state of the art assessment. Hydrol Earth Syst Sc 18(7):2735–2772

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

    Article  Google Scholar 

  • Huth R, Pokorná L (2004) Parametric versus non-parametric estimates of climatic trends. Theor Appl Climatol 77:107–112. doi:10.1007/s00704-003-0026-3

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Isfahan Regional Water Company (2014) Zayandeh-Rud River basin report. Isfahan, Iran In Persian

    Google Scholar 

  • Ji Z, Kang S (2013) Projection of snow cover changes over China under RCP scenarios. Clim Dynam 41(3–4):589–600

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2. Wiley, New York

    Google Scholar 

  • Ke CQ, Yu T, Yu K, Tang GD, King L (2009) Snowfall trends and variability in Qinghai, China. Theor Appl Climatol 98(3–4):251–258

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kiparsky M, Joyce B, Purkey D, Young C (2014) Potential impacts of climate warming on water supply reliability in the Tuolumne and Merced River basins, California. PloSONE 9(1):e84946

    Article  Google Scholar 

  • Kousari MR, Ahani H, Hakimelahi H (2013) An investigation of near surface wind speed trends in arid and semiarid regions of Iran. Theor Appl Climatol 114(1–2):153–168

    Article  Google Scholar 

  • Kousari MR, Dastorani MT, Niazi Y, Soheili E, Hayatzadeh M, Chezgi J (2014) Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water Resour Manag 28(7):1857–1872

    Article  Google Scholar 

  • Kripalani RH, OhJ H, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90(3–4):133–159

    Article  Google Scholar 

  • Madani K (2014) Water management in Iran: what is causing the looming crisis? J Environ Stud Sci 4(4):315–328

    Article  Google Scholar 

  • Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519(D):3634–3650

    Article  Google Scholar 

  • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 15(1):101–124

    Article  Google Scholar 

  • Mankin JS, Diffenbaugh NS (2015) Influence of temperature and precipitation variability on near-term snow trends. Clim Dynam 45(3–4):1099–1116. doi:10.1007/s00382-014-2357-4

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259

    Article  Google Scholar 

  • Massah Bavani AR, Morid S (2005) The impacts of climate change on water resources and agricultural production. J Water Resour Res 1:40–47 In Persian

    Google Scholar 

  • Micu DM, Dumitrescu A, Cheval S, Birsan MV (2015) Observed variability and trends from instrumental records. In: Climate of the Romanian Carpathians. Springer International Publishing, Switzerland, pp. 149–185

    Google Scholar 

  • Mioduszewski JR, Rennermalm AK, Robinson DA, Wang L (2015) Controls on spatial and temporal variability in Northern Hemisphere terrestrial snow melt timing, 1979–2012. J Clim 28(6):2136–2153

    Article  Google Scholar 

  • Mishra B, Babel MS, Tripathi NK (2014) Analysis of climatic variability and snow cover in the Kaligandaki River basin, Himalaya, Nepal. Theor Appl Climatol 116(3–4):681–694

    Article  Google Scholar 

  • Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno JI, Rahman K, Beniston M (2014) Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol 517:1114–1127

    Article  Google Scholar 

  • Morin J, Block P, Rajagopalan B, Clark M (2008) Identification of large scale climate patterns affecting snow variability in the eastern United States. Int J Climatol 28(3):315–328

    Article  Google Scholar 

  • Mortuza MR, Selmi S, Khudri MM, Ankur AK, Rahman MM (2014) Evaluation of temporal and spatial trends in relative humidity and dew point temperature in Bangladesh. Arab J Geosci 7(12):5037–5050

    Article  Google Scholar 

  • Mote PW (2006) Climate-driven variability and trends in mountain snowpack in western North America. J Clim 19(23):6209–6220

    Article  Google Scholar 

  • Nagarajan R (2009) Drought assessment. India, Springer Science & Business Media

    Google Scholar 

  • Nasri M, Modarres R (2009) Dry spell trend analysis of Isfahan Province, Iran. Int J Climatol 29(10):1430–1438

    Article  Google Scholar 

  • Nastos PT, Moustris KP, Larissi IK, Paliatsos AG (2013) Rain intensity forecast using artificial neural networks in Athens, Greece. Atmos Res 119:153–160

    Article  Google Scholar 

  • Nema P, Nema S, Roy P (2012) An overview of global climate changing in current scenario and mitigation action. Renew Sust Energ Rev 16(4):2329–2336

    Article  Google Scholar 

  • Park H, Yabuki H, Ohata T (2012) Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Science 6(1):23–37

    Article  Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Rebetez M, Reinhard M (2008) Monthly air temperature trends in Switzerland 1901–2000 and 1975–2004. Theor Appl Climatol 91(1–4):27–34

    Article  Google Scholar 

  • Reynard E, Bonriposi M, Graefe O, Homewood C, Huss M, Kauzlaric M, Liniger H, Rey E, Rist S, Schädler B, Schneider F, Weingartner R (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. Wiley Interdisciplinary Reviews: Water 1(4):413–426

    Google Scholar 

  • Ruiz-Villanueva V, Stoffel M, Wyżga B, Kundzewicz ZW, Czajka B, Niedźwiedź T (2014) Decadal variability of floods in the northern foreland of the Tatra Mountains. Reg Environ Change: 1–13. doi: 1 0.1007/s10113-014-0694-9

  • Safavi HR, Esfahani MK, Zamani AR (2014) Integrated index for assessment of vulnerability to drought, case study: Zayandehrood River basin, Iran. Water Resour Manag 28(6):1671–1688

    Article  Google Scholar 

  • Safavi HR, Golmohammadi MH, Sandoval-Solis S (2015) Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River basin. J Hydrol 528:773–789

    Article  Google Scholar 

  • Schmidli J, Goodess CM, Frei C, Haylock MR, Hundecha Y, Ribalaygua J, Schmith T (2007) Statistical and dynamical downscaling of precipitation: an evaluation and comparison of scenarios for the European Alps. J Geophys Res-Atmos 112(D4):D04105. doi:10.1029/2005JD0070261984–2012

    Article  Google Scholar 

  • Schöner W, Auer I, Böhm R (2009) Long term trend of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrol Process 23(7):1052–1063

    Article  Google Scholar 

  • Schonwiese CD, Rapp J (1997) Climate trend atlas of Europe based on observations 1891–1990. Springer Science & Business Media: Dordrecht

  • Schuler DV, Beldring S, Førland EJ, Roald LA, Skaugen TE (2006) Snow cover and snow water equivalent in Norway: current conditions (1961–1990) and scenarios for the future (2071–2100). Norwegian Meteorological Institute Report No. 1/2006 Climate

  • Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35(4):397–414

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Serquet G, Marty C, Dulex JP, Rebetez M (2011) Seasonal trends and temperature dependence of the snowfall/precipitation-day ratio in Switzerland. Geophys Res Lett 38(7):L07703

    Article  Google Scholar 

  • Sneyers R (1990) On the statistical analysis of series of observations. World Meteorological Organization, Technical Note 143, Geneva

  • Sreekanth PD, Geethanjali N, Sreedevi PD, Ahmed S, Kumar NR, Jayanthi PK (2009) Forecasting groundwater level using artificial neural networks. Curr Sci India 96(7):933–939

    Google Scholar 

  • Stafford JM, Wendler G, Curtis J (2000) Temperature and precipitation of Alaska: 50 year trend analysis. Theor Appl Climatol 67(1–2):33–44

    Article  Google Scholar 

  • Swed FS, Eisenhart C (1943) Tables for testing randomness of grouping in a sequence of alternatives. Ann Math Stat 14(1):66–87

    Article  Google Scholar 

  • Talaee PH, Sabziparvar AA, Tabari H (2012) Observed changes in relative humidity and dew point temperature in coastal regions of Iran. Theor Appl Climatol 110(3):385–393

    Article  Google Scholar 

  • Taylor RG, Scanlon B, Döll P, Rodell M, Van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green TR, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y, Gurdak JJ, Allen DM, Shamsudduha M, Hiscock K, Yeh PJF, Holman I, Treidel H (2013) Ground water and climate change. Nat Clim Chang 3(4):322–329

    Article  Google Scholar 

  • Tohver IM, Hamlet AF, Lee SY (2014) Impacts of 21st-century climate change on hydrologic extremes in the Pacific northwest region of North America. J Am Water Resour As 50(6):1461–1476

    Article  Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, Löpez-Moreno JI, Lorentz S, Schädler B, Schreier H, Schwaiger K, Vuille M, Woods R (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sc 15(2):471–504

    Article  Google Scholar 

  • Von Storch H (1999) Misuses of statistical analysis in climate research. In: Von Storch H, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp. 11–26

    Chapter  Google Scholar 

  • Webster MD, Babiker M, Mayer M, Reilly JM, Harnisch J, Hyman R, Sarofim MC, Wang C (2002) Uncertainty in emissions projections for climate models. Atmos Environ 36(22):3659–3670

    Article  Google Scholar 

  • White CJ, Tanton TW, Rycroft DW (2014) The impact of climate change on the water resources of the Amu Darya basin in Central Asia. Water Resour Manag 28(15):5267–5281

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Können GP (2003) Homogeneity of twentieth century European daily temperature and precipitation series. Int J Climatol 23(6):679–692

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 42:W02419. doi:10.1029/2005WR004065

    Article  Google Scholar 

  • Worsley KJ (1979) On the likelihood ratio test for a shift in location of normal populations. J Am Stat Assoc 74(366a):365–367

    Article  Google Scholar 

  • Wu F, Zhan J, Wang Z, Zhang Q (2014) Streamflow variation due to glacier melting and climate change in upstream Heihe River basin, Northwest China. Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2014.08.002

    Google Scholar 

  • Yue S, Pilon P, Phinney BOB (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrolog Sci J 48(1):51–63

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16(9):1807–1829

    Article  Google Scholar 

  • Zareian MJ, Eslamian S, Safavi HR (2015) A modified regionalization weighting approach for climate change impact assessment at watershed scale. Theor Appl Climatol 122:497–516

    Article  Google Scholar 

  • Zarenistanak M, Dhorde AG, Kripalani RH, Dhorde AA (2014) Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran. Theor Appl Climatol: 1–20. doi: 10.1007/s00704-014-1287-8

  • Zhao Q, Ye B, Ding Y, Zhang S, Yi S, Wang J, Shangguan D, Zhao C, Han H (2013) Coupling a glacier melt model to the variable infiltration capacity (VIC) model for hydrological modeling in North-Western China. Environmental Earth Sciences 68(1):87–101

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Isfahan Regional Water Company for providing data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Safavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safavi, H.R., Sajjadi, S.M. & Raghibi, V. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis. Theor Appl Climatol 130, 635–653 (2017). https://doi.org/10.1007/s00704-016-1898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1898-3

Keywords

Navigation