Skip to main content
Log in

Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was −5.0 % and that for wind speed 0.6 m s−1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Beckwith R, Teibel D, Bowen P (2004) Unwired wine: Sensor networks in vineyards. Proceedings of IEEE Sensors, 2004: 561-564

  • Bonnardot V, Cautenet S (2009) Mesoscale atmospheric modelling using a high horizontal grid resolution over a complex coastal terrain and a wine region of South Africa. J Appl Meteorol Climatol 48:330–348

    Article  Google Scholar 

  • Bonnardot V, Planchon O, Carey V, Cautenet S (2002) Diurnal wind, relative humidity and temperature variation in the Stellenbosch-Groot Drakenstein wine-growing area. S Afr J Enol Vitic 23:62–71

    Google Scholar 

  • Bonnardot V, Planchon O, Cautenet S (2005) Sea breeze development under an offshore synoptic wind in the South-Western Cape and implications for the Stellenbosch wine-producing area. Theor Appl Climatol 81:203–218

    Article  Google Scholar 

  • Bonnardot V, Sturman A, Soltanzadeh I, Zawar-Reza P, Hunter JJ, Quénol H (2011) Investigation of grapevine areas under climatic stress using high resolution atmospheric modelling: case studies in South Africa and New Zealand. Proceedings of the 19th International Congress on Biometeorology, 4-8 December 2011, Auckland, paper 338, 6pp.

  • Bonnardot V, Carey VA, Madelin M, Cautenet S, Coetzee Z, Quénol H (2012) Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa. J Int des Sci la Vigne et du Vin 46:1–13

    Google Scholar 

  • Bonnefoy C (2013) Observation et modélisation spatiale de la température dans les terroirs viticoles du Val de Loire dans le contexte du changement climatique, PhD thesis, Université Rennes 2, Rennes, p 319‬

  • Bonnefoy C, Castel T, Madelin M (2010) Évaluation du modèle climatique régional WRF appliqué à la Bourgogne viticole. Actes des Neuvièmes Rencontres de Théo Quant (Foltête, J-C ed.), Besançon, p. 8. available from http://thema.univ-fcomte.fr/theoq/pdf/2009/TQ2009%20ARTICLE%2071.pdf

  • Briche E, Quénol H, Beltrando G (2011) Changement climatique dans le vignoble champenois. L’année (2003), préfigure-t-elle les prévisions des modèles numériques pour le XXIe siècle? L’Espace Géographique 2(11):164–175

    Article  Google Scholar 

  • Carey VA, Archer E, Barbeau G, Saayman D (2008) Viticultural terroirs in Stellenbosch, South Africa. I. The identification of natural terroir units. J Int des Sciences de la Vigne et du Vin 42:169–183

    Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Leroy Ladurie E (2004) Grape ripening as a past climate indicator. Nature 432:289–290

    Article  Google Scholar 

  • Conradie WJ, Carey VA, Bonnardot V, Saayman D, Van Schoor LH (2002) Effect of natural “terroir” units on the performance of Sauvignon blanc grapevines in the Stellenbosch/Durbanville districts of South Africa. I. Geology, soil, climate, phenology and grape composition. S Afr J Enol Vitic 23:78–91

    Google Scholar 

  • Coombe B (1987) Influence of temperature on composition and quality of grapes. Acta Horticulturae (ISHS) 206:23–36

    Article  Google Scholar 

  • Cuccia C (2013) Impact du changement climatique sur la phénologie du Pinot noir en Bourgogne, PhD thesis, Université de Bourgogne, Dijon, p 329

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Dufois F, Rouault M (2012) Sea surface temperature in False Bay (South Africa): Towards a better understanding of its seasonal and inter-annual variability. Cont Shelf Res 43:24–35. doi:10.1016/j.csr.2012.04.009

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851

    Article  Google Scholar 

  • Elbir T (2003) Comparison of model predictions with the data of an urban air quality monitoring network in Izmir, Turkey. Atmos Environ 37:2149–2157

    Article  Google Scholar 

  • Garcia de Cortazar-Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude du changement climatique à l’échelle de la France. Thèse de doctorat de L’Ecole Supérieure Nationale d’ Agronomie, Montpellier, p 175

    Google Scholar 

  • Hall A, Jones GV (2009) Effect of potential atmospheric warming on temperature based indices describing Australian winegrape growing conditions. Aust J Grape Wine Res 15:97–119

    Article  Google Scholar 

  • Hart NCG, Reason CJC, Fauchereau N (2010) Tropical–extratropical interactions over southern Africa: Three cases of heavy summer season rainfall. Mon Weather Rev 138:2608–2623

    Article  Google Scholar 

  • Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Hu XM, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844

    Article  Google Scholar 

  • Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. Comptes Rendus de l'Academie d'Agriculture de France 64:1117–1126.

  • Hunter J, Bonnardot V (2011) Suitability of some climatic parameters for grapevine cultivation in South Africa, with focus on key physiological processes. S Afr J Enol Vitic 32:137–154

    Google Scholar 

  • Hunter JJ, Volschenck C, Bonnardot V (2010) Linking grapevine row orientation to changing climate in South Africa. In: Proc Intervitis Interfructa Conference, 24-28 March 2010. Germany, Stuttgart, pp 60–70

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modeling. Cambridge University Press, Cambridge, p 829

  • Janjic ZI (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Ji L, Gallo K (2006) An agreement coefficient for image comparison. Photogramm Eng Remote Sens 72:823–833

    Article  Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73:319–343

    Article  Google Scholar 

  • Jones GV, Reid R, Vilks A (2012) Climate, grapes and wine: structure and suitability in a variable and changing climate. In: Dougherty PH (ed) The geography of wine: regions, terroir and techniques. Springer, Dordrecht, pp 109–133

    Chapter  Google Scholar 

  • Kaempffer C, Germishuyse T (2009) Climate data at the Agricultural Research Council, PositionIT 66-68, ARC-ISCW, Pretoria. (www.ee.co.za/wp…/PosIT_Apr-May_p_66-68.pdf accessed on 26 Jan 2016)

  • Kain JS (2004) The Kain-Fritsch convective parameterization: An update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Karppinen A, Kukkonen J, Elolahde T, Konttinen M, Koskentalo T (2000) A modeling system for predicting urban air pollution: comparison of model predictions with the data of an urban measurement network in Helsinki. Atmos Environ 34:3735–3743

    Article  Google Scholar 

  • Kilpeläinen T, Vihma T, Manninen M, Sjöblom A, Jakobson E, Palo T, Maturilli M, (2012) Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard. Q J R Meteorol Soc 138:1867–1883

  • Kleczek MA, Steeneveld GJ, Holtslag AA (2014) Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up. Bound-Layer Meteorol 152:213–243

    Article  Google Scholar 

  • Lyons TJ, Considine JA (2007) Modelling meso-climate in Margaret River. The Australian and New Zealand Grapegrower and Winemaker #524:65-69.

  • Macron C, Pohl B, Richard Y, Bessafi M (2014) How do Tropical Temperate Troughs form and develop over Southern Africa? J Clim 27:1633–1647

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16,663–16,682

    Article  Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73

    Article  Google Scholar 

  • Pielke RA (2013) Mesoscale Meteorological Modeling. 3rd edition, Academic Press, Orlando, p 760

  • Reason CJC, Jury MR (1990) On the generation and propagation of the southern African coastal low. Q J R Meteorol Soc 116:1133–1151

    Article  Google Scholar 

  • Reason CJC, Landman WA, Tennant W (2006a) Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull Am Meteorol Soc 87:941–955

    Article  Google Scholar 

  • Reason CJC, Engelbrecht F, Landman WA, Lutjeharms JRE, Piketh S, Rautenbach CJW, Hewitson B (2006b) A review of South African research in atmospheric science and physical oceanography during 2000-2005. S Afr J Sci 102:35–45

    Google Scholar 

  • Risien CM, Reason CJC, Shillington FA (2004) Variability in satellite winds over the Benguela upwelling system during 1999-2000. J Geophys Res 109:C03010. doi:10.1029/2003JC001880

    Article  Google Scholar 

  • Roux B (2009) Ultra-high resolution climate simulations over the Stellenbosch wine producing region using a variable-resolution model. Faculty of Natural and Agricultural Science, University of Pretoria, South Africa, p 106

    Google Scholar 

  • Schultz H (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:1–12

    Article  Google Scholar 

  • Schulze BR (1965) South Africa. In: Thompson BW (ed) The Climate of Africa. Oxford University Press, Nairobi

    Google Scholar 

  • Shanmuganthan S, Ghobakhlou A, Sallis P (2008) Sensor data acquisition for climate change modelling. WSEAS TRANSACTIONS on Circuits & Systems 7:942–952

    Google Scholar 

  • Sivacoumar R, Thanasekaran K (1999) Line source model for vehicular pollution prediction near roadways and model evaluation through statistical analysis. Environ Pollut 104:389–395

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang X-Y, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR, Boulder, p 113

    Google Scholar 

  • Sturman A, Quénol H (2013) Changes in atmospheric circulation and temperature trends in major vineyard regions of New Zealand. Int J Climatol 33:2609–2621

    Google Scholar 

  • Sturman A, Trought M, Quénol H, Zawar-Reza P, Tait A, Agnew R, Soltanzadeh I, Powell S, Parker A, Katurji M, Gendig E (2014) Mesures et modélisation de la variabilité climatique à l’échelle des vignobles de Nouvelle Zélande. In: Quénol (editor), ‘Changement Climatique et Terroirs Viticoles’. TEC & DOC, Lavoisier, Paris, pp 265–288

    Google Scholar 

  • Taljaard JJ (1995) Atmospheric Circulations Systems, Synoptic Climatology and Weather phenomena of South Africa. Part 3: The synoptic climatology of South Africa in January and July, South African Weather Bureau, Technical paper 29, Government Printer, Pretoria

    Google Scholar 

  • Tesic D, Woolley D, Hewett E, Martin D (2002) Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’s Bay, New Zealand. 1. Phenology and characterisation of viticultural environments. Aust J Grape Wine Res 8:15–26

    Article  Google Scholar 

  • Tongrod N, Tuantranont A, Kerdcharoen T (2009) Adoption of precision agriculture in vineyard. 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009. ECTI-CON 2009, 2:735-738.

  • Van der Lingen CD, Fréon P, Hutchings L, Roy C, Bailey GW, Bartholomae C, Cockcroft AC, Field JG, Peard KR, Van der Plas AK (2006) Forecasting shelf processes of relevance to living marine resources in the BCLME. Large Mar Ecosystems 14:309–347

    Article  Google Scholar 

  • Vink N, Deloire A, Bonnardot V, Ewert J (2012) Climate change and the future of South Africa’s wine industry. Int J Clim Change Strategies Manage 4:420–441

    Article  Google Scholar 

  • Webb L, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Clim chang Grapevine Phenology 13:165–175

    Google Scholar 

  • Webb L, Whiting J, Watt A, Hill T, Wigg F, Dunn G, Needs S, Barlow EWR (2010) Managing grapevines through severe heat: A survey of growers after the 2009 summer heat wave in South-eastern Australia. J Wine Res 21:147–165

    Article  Google Scholar 

  • Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Chang 2:259–264

    Article  Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci U S A 103:11217–11222

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

  • Willmott CJ (1982) Some Comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Winkler AJ, Cook JA, Kliere WM, Lider LA (1974) General Viticulture (2nd ed.). University of California Press, Oakland, p 710

  • Xu Y, Castel T, Richard Y, Cuccia C, Bois B (2012) Burgundy regional climate change and its potential impact on grapevines. Clim Dyn 39:1613–1626

    Article  Google Scholar 

  • Zhang H, Pu Z, Zhang X (2013) Examination of error in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Weather Forecast 28:893–914. doi:10.1175/WAF-D-12-00109.1

    Article  Google Scholar 

Download references

Acknowledgments

This research has benefitted from funding provided by the ANR-JC07 194103 TERVICLIM Programme “Observation et Modélisation spatiale du climat à l’échelle des terroirs viticoles dans un contexte de changement climatique” of CNRS (France), as well as the Ministry for Primary Industries (New Zealand) programme “Development of advanced weather and climate modelling tools to help vineyards adapt to climate change”, Project UOC30915.

The validation work would have been impossible without the collaboration of two South African organizations. The authors are therefore grateful to the Institute for Soil, Climate and Water of the Agricultural Research Council of South Africa for providing the surface meteorological data from its automatic weather station network, previously used within the framework of the WW1312 terroir project of Winetech (Wine Industry Network for Expertise and Technology) led by Stellenbosch University, and to the South African Weather Service for providing synoptic charts and the upper air data for Cape Town International Airport.

The authors are also grateful for continuing logistical support provided by the Department of Geography, University of Canterbury, New Zealand and the LETG-Rennes COSTEL Laboratory, University of Rennes 2, France.

The detailed comments and suggestions provided by an anonymous reviewer were also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Sturman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanzadeh, I., Bonnardot, V., Sturman, A. et al. Assessment of the ARW-WRF model over complex terrain: the case of the Stellenbosch Wine of Origin district of South Africa. Theor Appl Climatol 129, 1407–1427 (2017). https://doi.org/10.1007/s00704-016-1857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1857-z

Keywords

Navigation